首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Based on the idea of Dikin-type primal-dual affine scaling method for linear programming, we describe a high-order Dikin-type algorithm for P. (κ)-matrix linear complementarity problem in a wide neighborhood of the central path, and its polynomial-time complexity bound is given. Finally, two numerical experiments are provided to show the effectiveness of the proposed algorithms.  相似文献   

2.
In this paper, we consider the static output feedback (SOF) H∞-synthesis problem posed as a nonlinear semi-definite programming (NSDP) problem. Two numerical algorithms are developed to tackle the NSDP problem by solving the corresponding Karush- Kuhn-Tucker first-order necessary optimality conditions iteratively. Numerical results for various benchmark problems illustrating the performance of the proposed methods are given.  相似文献   

3.
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.  相似文献   

4.
In this paper we introduce a primal-dual potential reduction algorithm for positive semi-definite programming. Using the symetric preserving scalings for both primal and dual interior matrices, we can construct an algorithm which is very similar to the primal-dual potential reduction algorithm of Huang and Kortanek [6] for linear programming. The complexity of the algorithm is either O(nlog(X0 · S0/ε) or O(nlog(X0· S0/ε) depends on the value of ρ in the primal-dual potential function, where X0 and S0 is the initial interior matrices of the positive semi-definite programming.  相似文献   

5.
The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have very simple structure and can be implemented easily. Forany given precision, the algorithms will terminate in a finite number of steps.  相似文献   

6.
In this paper we investigate several solution algorithms for the convex fea- sibility problem(CFP)and the best approximation problem(BAP)respectively.The algorithms analyzed are already known before,but by adequately reformulating the CFP or the BAP we naturally deduce the general projection method for the CFP from well-known steepest decent method for unconstrained optimization and we also give a natural strategy of updating weight parameters.In the linear case we show the connec- tion of the two projection algorithms for the CFP and the BAP respectively.In addition, we establish the convergence of a method for the BAP under milder assumptions in the linear case.We also show by examples a Bauschke's conjecture is only partially correct.  相似文献   

7.
It is well known that for symmetric linear programming there exists a strictly complementary solution if the primal and the dual problems are both feasible. However, this is not necessary true for symmetric or general semide finite programming even if both the primal problem and its dual problem are strictly feasible. Some other properties are also concerned.  相似文献   

8.
A Dynamic Programming Algorithm for the κ-Haplotyping Problem   总被引:1,自引:0,他引:1  
The Minimum Fragments Removal (MFR) problem is one of the haplotyping problems: given a set of fragments, remove the minimum number of fragments so that the resulting fragments can be partitioned into k classes of non-conflicting subsets. In this paper, we formulate the κ-MFR problem as an integer linear programming problem, and develop a dynamic programming approach to solve the κ-MFR problem for both the gapless and gap eases.  相似文献   

9.
Given an edge weighted graph, the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum. Here we study a special case, i.e. the Constrained Maximum Edge-Weight Connected Graph problem (CMECG), which is an MECG whose candidate subgraphs must include a given set of k edges, then also called the k-CMECG. We formulate the k-CMECG into an integer linear programming model based on the network flow problem. The k-CMECG is proved to be NP-hard. For the special case 1-CMECG, we propose an exact algorithm and a heuristic algorithm respectively. We also propose a heuristic algorithm for the k-CMECG problem. Some simulations have been done to analyze the quality of these algorithms. Moreover, we show that the algorithm for 1-CMECG problem can lead to the solution of the general MECG problem.  相似文献   

10.
邓键  黄庆道  马明娟 《东北数学》2008,24(5):433-446
In this paper we propose an optimal method for solving the linear bilevel programming problem with no upper-level constraint. The main idea of this method is that the initial point which is in the feasible region goes forward along the optimal direction firstly. When the iterative point reaches the boundary of the feasible region, it can continue to go forward along the suboptimal direction. The iteration is terminated until the iterative point cannot go forward along the suboptimal direction and effective direction, and the new iterative point is the solution of the lower-level programming. An algorithm which bases on the main idea above is presented and the solution obtained via this algorithm is proved to be optimal solution to the bilevel programming problem. This optimal method is effective for solving the linear bilevel programming problem.  相似文献   

11.
《Optimization》2012,61(5):713-733
This article develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs under spectral norm uncertainty and show, in this case, that the optimistic counterpart is also computationally tractable.  相似文献   

12.
《Optimization》2012,61(4-5):507-528
In this article, we study semi-definite and semi-infinite programming problems (SDSIP), which includes semi-infinite linear programs and semi-definite programs as special cases. We establish that a uniform duality between the homogeneous (SDSIP) and its Lagrangian-type dual problem is equivalent to the closedness condition of certain cone. Moreover, this closedness condition was assured by a generalized canonically closedness condition and a Slater condition. Corresponding results for the nonhomogeneous (SDSIP) problem were obtained by transforming it into an equivalent homogeneous (SDSIP) problem.  相似文献   

13.
In this paper, we develop two discretization algorithms with a cutting plane scheme for solving combined semi-infinite and semi-definite programming problems, i.e., a general algorithm when the parameter set is a compact set and a typical algorithm when the parameter set is a box set in the m-dimensional space. We prove that the accumulation point of the sequence points generated by the two algorithms is an optimal solution of the combined semi-infinite and semi-definite programming problem under suitable assumption conditions. Two examples are given to illustrate the effectiveness of the typical algorithm.  相似文献   

14.
The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having extra linear constraints. This paper shows that two useful and powerful features of the classical trust-region problem continue to hold for an extended trust-region problem with linear inequality constraints under a new dimension condition. First, we establish that the class of extended trust-region problems has an exact SDP-relaxation, which holds without the Slater constraint qualification. This is achieved by proving that a system of quadratic and affine functions involved in the model satisfies a range-convexity whenever the dimension condition is fulfilled. Second, we show that the dimension condition together with the Slater condition ensures that a set of combined first and second-order Lagrange multiplier conditions is necessary and sufficient for global optimality of the extended trust-region problem and consequently for strong duality. Through simple examples we also provide an insightful account of our development from SDP-relaxation to strong duality. Finally, we show that the dimension condition is easily satisfied for the extended trust-region model that arises from the reformulation of a robust least squares problem (LSP) as well as a robust second order cone programming model problem (SOCP) as an equivalent semi-definite linear programming problem. This leads us to conclude that, under mild assumptions, solving a robust LSP or SOCP under matrix-norm uncertainty or polyhedral uncertainty is equivalent to solving a semi-definite linear programming problem and so, their solutions can be validated in polynomial time.  相似文献   

15.
《Optimization》2012,61(3):243-269
In this paper, we apply the Dubovitskii-Milyutin approach to derive strong duality theorems for inexact linear programming problems. Inexact linear programming deals with the standard linear problem in which the data is not well known and it is supposed to lie in certain given convex sets. The case of parametric dependence of the data is particularly analyzed and relations with semi-infinite and

semi-definite programming are also commented.  相似文献   

16.
We consider two closely related optimization problems: a problem of convex semi-infinite programming with multidimensional index set and a linear problem of semi-definite programming. In the study of these problems we apply the approach suggested in our recent paper [14] and based on the notions of immobile indices and their immobility orders. For the linear semi-definite problem, we define the subspace of immobile indices and formulate the first-order optimality conditions in terms of a basic matrix of this subspace. These conditions are explicit, do not use constraint qualifications, and have the form of a criterion. An algorithm determining a basis of the subspace of immobile indices in a finite number of steps is suggested. The optimality conditions obtained are compared with other known optimality conditions.  相似文献   

17.
In this paper we state the “oblique extension principle” as a problem of semi-definite programming. Using this optimization technique we show that the existence of a tight frame is equivalent to the existence of a certain matrix from a cone of positive semi-definite matrices, whose entries satisfy linear constraints. We also discuss how to use the optimization techniques to reduce the number of frame generators in univariate and multivariate cases. We apply our results for constructing tight frames for several subdivision schemes.  相似文献   

18.
交替方向法求解带线性约束的变分不等式   总被引:1,自引:0,他引:1  
1引言变分不等式是一个有广泛应用的数学问题,它的一般形式是:确定一个向量,使其满足这里f是一个从到自身的一个映射,S是R中的一个闭凸集.在许多实际问题中集合S往往具有如下结构其中AbK是中的一个简单闭凸集.例如一个正卦限,一个框形约束结构,或者一个球简言之,S是R中的一个超平面与一个简单闭凸集的交.求解问题(1)-(2),往往是通过对线性约束A引人Lagrange乘子,将原问题化为如下的变分不等式:确定使得我们记问题(3)-(4)为VI(F).熟知[3],VI(,F)等价于投影方程其中凡(·)表…  相似文献   

19.
We recently proposed a data mining approach for classifying companies into several groups using ellipsoidal surfaces. This problem can be formulated as a semi-definite programming problem, which can be solved within a practical amount of computation time by using a state-of-the-art semi-definite programming software. It turned out that this method performs better for this application than earlier methods based on linear and general quadratic surfaces. In this paper we will improve the performance of ellipsoidal separation by incorporating the idea of maximal margin hyperplane developed in the field of support vector machine. It will be demonstrated that the new method can very well simulate the rating of a leading rating company of Japan by using up to 18 financial attributes of 363 companies. This paper is expected to provide another evidence of the importance of ellipsoidal separation approach in credit risk analysis.  相似文献   

20.
Space tensors appear in physics and mechanics. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research area of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In this short paper, we investigate these problems from the viewpoint of conic linear programming (CLP). We characterize the dual cone of the positive semi-definite space tensor cone, and study the CLP formulation and the duality of positive semi-definite space tensor conic programming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号