首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider symmetric flows of a viscous compressible barotropic fluid with a free boundary, under a general mass force depending both on the Eulerian and Lagrangian co‐ordinates, with arbitrarily large initial data. For a general non‐monotone state function p, we prove uniform‐in‐time energy bound and the uniform bounds for the density ρ, together with the stabilization as t → ∞ of the kinetic and potential energies. We also obtain H1‐stabilization of the velocity v to zero provided that the second viscosity is zero. For either increasing or non‐decreasing p, we study the Lλ‐stabilization of ρ and the stabilization of the free boundary together with the corresponding ω‐limit set in the general case of non‐unique stationary solution possibly with zones of vacuum. In the case of increasing p and stationary densities ρS separated from zero, we establish the uniform‐in‐time H1‐bounds and the uniform stabilization for ρ and v. All these results are stated and mainly proved in the Eulerian co‐ordinates. They are supplemented with the corresponding stabilization results in the Lagrangian co‐ordinates in the case of ρS separated from zero. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We study the large‐time behavior of (weak) solutions to a two‐scale reaction–diffusion system coupled with a nonlinear ordinary differential equations modeling the partly dissipative corrosion of concrete (or cement)‐based materials with sulfates. We prove that as t → ∞ , the solution to the original two‐scale system converges to the corresponding two‐scale stationary system. To obtain the main result, we make use essentially of the theory of evolution equations governed by subdifferential operators of time‐dependent convex functions developed combined with a series of two‐scale energy‐like time‐independent estimates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we study the large‐time behavior of classical solutions to the two‐species Vlasov‐Maxwell‐Boltzmann system in the whole space \input amssym ${\Bbb R}^3$ . The existence of global‐in‐time nearby Maxwellian solutions is known from Strain in 2006. However, the asymptotic behavior of these solutions has been a challenging open problem. Building on our previous work on time decay for the simpler Vlasov‐Poisson‐Boltzmann system, we prove that these solutions converge to the global Maxwellian with the optimal decay rate of O(t−3/2 + 3/(2r)) in the L (L)‐norm for any 2 ≤ r ≤ ∞ if initial perturbation is smooth enough and decays in space velocity fast enough at infinity. Moreover, some explicit rates for the electromagnetic field tending to 0 are also provided. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
In [L] the author provided existence theorems for initial-boundary-value problems in thermoelasticity for unbounded domains. Continuing this work the asymptotic behaviour of solutions in R3 with respect to t → ∞ will be described in this paper.  相似文献   

5.
In this paper the large time behavior of the global L∞ entropy solutions to the hyperbolic system with dissipative structure is investigated. It is proved that as t →∞ the entropy solutions tend to a constant equilibrium state in L2 norm with exponential decay even when the initial values are arbitrarily large. As an illustration, a class of 2 × 2 system is studied.  相似文献   

6.
We shall show an exact time interval for the existence of local strong solutions to the Keller‐Segel system with the initial data u0 in Ln /2w (?n), the weak Ln /2‐space on ?n. If ‖u0‖ is sufficiently small, then our solution exists globally in time. Our motivation to construct solutions in Ln /2w (?n) stems from obtaining a self‐similar solution which does not belong to any usual Lp(?n). Furthermore, the characterization of local existence of solutions gives us an explicit blow‐up rate of ‖u (t)‖ for n /2 < p < ∞ as tTmax, where Tmax denotes the maximal existence time (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The dynamics of dilute electrons can be modeled by the Vlasov‐Poisson‐Boltz‐mann system, where electrons interact with themselves through collisions and with their self‐consistent electric field. It is shown that any smooth, periodic initial perturbation of a given global Maxwellian that preserves the same mass, momentum, and total energy (including both kinetic and electric energy), leads to a unique global‐in‐time classical solution. The construction of global solutions is based on an energy method with a new estimate of dissipation from the collision: ∫0tLf(s), f(s)〉ds is positive definite for solution f(t,x,v) with small amplitude to the Vlasov‐Poisson‐Boltzmann system (1.4). © 2002 Wiley Periodicals, Inc.  相似文献   

9.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

10.
In this paper, we investigate the large‐time decay and stability to any given global smooth solutions of the 3‐D incompressible inhomogeneous Navier‐Stokes equations. In particular, we prove that given any global smooth solution (a,u) of (1.2), the velocity field u decays to 0 with an explicit rate, which coincides with the L2 norm decay for the weak solutions of the 3‐D classical Navier‐Stokes system [26,29] as t goes to ∞. Moreover, a small perturbation to the initial data of (a,u) still generates a unique global smooth solution to (1.2), and this solution keeps close to the reference solution (a,u) for t > 0. We should point out that the main results in this paper work for large solutions of (1.2). © 2010 Wiley Periodicals, Inc.  相似文献   

11.
In this paper the asymptotic behaviour of the solutions of x' = A(t)x + h(t,x) under the assumptions of instability is studied, A(t) and h(t,x) being a square matrix and a vector function, respectively. The conditions for the existence of bounded solutions or solutions tending to the origin as t → ∞ are obtained. The method: the system is recasted to an equation with complex conjugate coordinates and this equation is studied by means of a suitable Lyapunov function and by virtue of the Wazevski topological method. Applications to a nonlinear differential equation of the second order are given.  相似文献   

12.
In this paper, we study the existence of anti‐periodic solutions for the first order evolution equation in a Hilbert space H, where G : H → ? is an even function such that ?G is a mapping of class (S+) and f : ? → ? satisfies f(t + T) = –f(t) for any t ∈ ? with f(·) ∈ L2(0, T; H). (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A simple result concerning integral inequalities enables us to give an alternative proof of Waltman's theorem: limt → ∞t0a(s) ds = ∞ implies oscillation of the second order nonlinear equation y″(t) + a(t) f(y(t)) = 0; to prove an analog of Wintner's theorem that relates the nonoscillation of the second order nonlinear equations to the existence of solutions of some integral equations, assuming that limt → ∞t0a(s) ds exists; and to give an alternative proof and to extend a result of Butler. An often used condition on the coefficient a(t) is given a more familiar equivalent form and an oscillation criterion involving this condition is established.  相似文献   

14.
A basic mechanism of a formation of shocks via gradient blow‐up from analytic solutions for the third‐order nonlinear dispersion PDE from compacton theory (1) is studied. Various self‐similar solutions exhibiting single point gradient blow‐up in finite time, as tT? < ∞ , with locally bounded final time profiles u(x, T?) , are constructed. These are shown to admit infinitely many discontinuous shock‐type similarity extensions for t > T , all of them satisfying generalized Rankine–Hugoniot's condition at shocks. As a consequence, the nonuniqueness of solutions of the Cauchy problem after blow‐up is detected. This is in striking difference with general uniqueness‐entropy theory for the 1D conservation laws such as (a partial differential equation, PDE, Euler's equation from gas dynamics) (2) created by Oleinik in the middle of the 1950s. Contrary to (1) and not surprisingly, self‐similar gradient blow‐up for (2) is shown to admit a unique continuation. Bearing in mind the classic form (2) , the NDE (1) can be written as (3) with the standard linear integral operator (?D2x)?1 > 0 . However, because (3) is a nonlocal equation, no standard entropy and/or BV‐approaches apply (moreover, the x‐variations of solutions of (3) is increasing for BV data u0(x) ).  相似文献   

15.
We study the asymptotic time behavior of global smooth solutions to general entropy, dissipative, hyperbolic systems of balance laws in m space dimensions, under the Shizuta‐Kawashima condition. We show that these solutions approach a constant equilibrium state in the Lp‐norm at a rate O(t? (m/2)(1 ? 1/p)) as t → ∞ for p ∈ [min{m, 2}, ∞]. Moreover, we can show that we can approximate, with a faster order of convergence, the conservative part of the solution in terms of the linearized hyperbolic operator for m ≥ 2, and by a parabolic equation, in the spirit of Chapman‐Enskog expansion in every space dimension. The main tool is given by a detailed analysis of the Green function for the linearized problem. © 2007 Wiley Periodicals, Inc.  相似文献   

16.
《偏微分方程通讯》2013,38(7-8):1385-1408
The purpose of this paper is to study the limit in L 1(Ω), as t → ∞, of solutions of initial-boundary-value problems of the form ut ? Δw = 0 and u ∈ β(w) in a bounded domain Ω with general boundary conditions ?w/?η + γ(w) ? 0. We prove that a solution stabilizes by converging as t → ∞ to a solution of the associated stationary problem. On the other hand, since in general these solutions are not unique, we characterize the true value of the limit and comment the results on the related concrete situations like the Stefan problem and the filtration equation.  相似文献   

17.
This paper studies the approximation of the non‐Newtonian fluid equations by the artificial compressibility method. We first introduce a family of perturbed compressible non‐Newtonian fluid equations (depending on a positive parameter ε) that approximates the incompressible equations as ε → 0+. Then, we prove the unique existence and convergence of solutions for the compressible equations to the solutions of the incompressible equations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Consider a flat two-dimensional vortex sheet perturbed initially by a small analytic disturbance. By a formal perturbation analysis, Moore derived an approximate differential equation for the evolution of the vortex sheet. We present a simplified derivation of Moore's approximate equation and analyze errors in the approximation. The result is used to prove existence of smooth solutions for long time. If the initial perturbation is of size ? and is analytic in a strip |??m γ| < ρ, existence of a smooth solution of Birkhoff's equation is shown for time t < k2p, if ? is sufficiently small, with κ → 1 as ? → 0. For the particular case of sinusoidal data of wave length π and amplitude e, Moore's analysis and independent numerical results show singularity development at time tc = |log ?| + O(log|log ?|. Our results prove existence for t < κ|log ?|, if ? is sufficiently small, with k κ → 1 as ? → 0. Thus our existence results are nearly optimal.  相似文献   

19.
We study second‐order finite‐volume schemes for the non‐linear hyperbolic equation ut(x, t) + div F(x, t, u(x, t)) = 0 with initial condition u0. The main result is the error estimate between the approximate solution given by the scheme and the entropy solution. It is based on some stability properties verified by the scheme and on a discrete entropy inequality. If u0LBVloc(ℝN), we get an error estimate of order h1/4, where h defines the size of the mesh. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
We study initial and boundary value problems for the wave equation and the heat equation with a time-independent right-hand term f in two space dimensions in the exterior of a closed curve C. In the case of Neumann's boundary condition ?u/?n = 0 on C, the solutions increase with a logarithmic rate as t → ∞ if ∫ fdx ≠ 0. In contrast to this, the solutions of the corresponding Dirichlet problems converge to the solution of the related static problem as t → ∞. In the case of the wave equation, these results have already been obtained by L: A. Muravei under the additional assumption that the curvature of C is positive, by using high frequency estimates for the reduced wave equation Δ U + ?2 U = 0. The analysis presented here is based on different methods, which can be applied to arbitrary smooth curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号