首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 22 毫秒
1.
二阶非线性阻尼常微分方程的振动性定理   总被引:14,自引:0,他引:14  
考虑二阶非线性阻尼微分方程(α(t)ψ(x(t))x′(t))′ p(t)x′(t) q(t)f(x(t))=0 (1)和二阶非线性微分不等式x(t){(α(t)ψ(x(t))x′(t))′ p(t)x′(t) q(t)f(x(t))}≤0,(2)其中α,p,q∈C([t_0,∞)→(-∞,∞)),ψ,f∈C(R→R),并且α(t)>0,xf(x)>0 (x≠0).此外,我们总假设方程(1)的每一个解 x(t)可以延拓于[t_0, ∞)上.在任何无穷区间[T,∞)上,x(t)不恒等于零,这样的解叫正则解.一个正则解,若它有任意大的零点,则称为振动的;否则就称为非振动的.若方程(1)的所有正则解是振动的,则称方程(1)是振动的.关于不等式(2)的振动性的定义,与方程(1)的振动性的定义完全类似,不再赘述.  相似文献   

2.
方程(1.1)有一个解x(f)能延拓于半无限区间(t_0,∞)上,其中t_0>0.本文将仅限于讨论这类可以延拓于(t_0,∞)上的解。 方程(1.1)的解称做振动的,如果它有任意大的零点;否则它将被称为  相似文献   

3.
二阶强次线性常微分方程的振动性定理   总被引:1,自引:0,他引:1  
本文讨论二阶微分方程 (a(t)ψ(x)x)+q(t)f(x)g(x′)=0 (1)的解的振动性质。在方程(1)中,a∈C′([t_0,∞)→(0,∞)),ψ∈C′(R→[0,∞)),q∈C([t_0,∞)→[0,∞))且在任意的区间[t,∞)(t≥t_0)上不恒等于0,f∈C′(R→R),g∈C(R→R)。我们仅考虑方程(1)的可以延拓于[t_0,∞)上的解。在任何无限区间[T,∞)上x(t)不恒等于零,这样的解叫正则解。一个正则解,若它有任意大的零点,则叫振动的;否则就叫非振动的。  相似文献   

4.
本文讨论二阶非线性常微分方程 (a(t)ψ(x(t))x’(t))’+q(t)f(x(t))g(x’(t))=0 (1)的解的振动性质。在方程(1)中,α∈C[[t_0,∞),(0,∞)],ψ∈C[R,(0,∞)](R=(-∞,+∞)),q∈C[[t_0,∞),[0,∞)]且在任意的区间(t,∞)(t≥t_0)上不恒等于0,f∈C’[R,R],g∈C[R,R]。关于微分方程振动性的定义,如通常定义,不再详述。在下面的定理中,以下条件将要用到:  相似文献   

5.
§1.引言本文讨论二阶非线性泛函微分方程(r(t)y′)′ f(t,y) g(t,y_t)=p(t) (1)解的有界性.我们将证明,当方程(r(t)x′)′ f(t,x)=0 (2)的一切解有界,加上某些补充条件,可以保证方程(1)亦有同样的性质.我们约定,f:I=[t_0,∞)×D((?)R)→R=(-∞, ∞)及 r:I→R~ =[0,∞)为连续函数,f_x(t,x)在 I×D 存在、连续.用 x(t)=x(t;s,x_0,x′_0)表示方程(2)满足初始条件 x(s)=x_0,r(s)x′(s)=x′_0的唯一解.此方程的每一有界解可以延拓到全区间(?),因此在 I~2×D~2上关于它的四个独立变量连续可微.从一阶常微分方程组解关于初值  相似文献   

6.
§1.引言本文讨论n阶非线性泛函微分方程 L_nx(t)+P(t)L_(n-1)x(t)+f(t,x(t),x(g(t)))=h(t) (1)解的渐近性和非振动性,其中L_0x(t)=x(t),L_kx(t)=a_k(t)(L_(k-1)x(t))′,k=1,2,…u,a,p,h,g∈C~0E[t_0,∞),且a_k(t)>0,k=1,2,…n-1,a_n(t)=1;t_0≤g(t)≤t,当t→∞时,g(t)→∞;f∈C~0([t_0,∞)×R_2,R)。我们给出了方程(1)的所有振动解和有界解具有渐近性态:L_kx(f)→0,k=0,1,2,…n-1,的若干充分性准则,并给出了它不存在有界振动解的几个保证性条件。所得定理和推论都分别推广了文[1]-[4]的相应结果。  相似文献   

7.
本文考虑具分布偏差变元的微分方程[x(t)- Cx(t-r)]′+ f(t,∫0x(t+s)du(s))=0,t≥t0,(1)其中 C,r,τ∈R+且0≤C<1,f(t,x)∈ C([t0,∞],R),xf(t,x)>0,x≠0.通过对方程(1)的非振动解及振动解的渐近性的讨论,获得了方程(1)的全局渐近稳定的充分条件.  相似文献   

8.
二阶非线性摄动常微分方程的振动性定理   总被引:2,自引:1,他引:1  
<正> 本文讨论二阶非线性摄动常微分方程 (a(t)φ(x)x′)′+Q(t,x)=P(t,x,x′) (1)解的振动性质.在方程(1)中,a:[t_0,∞)→(0,∞),φ:R→[0,∞),并且当x≠0时,φ(x)≠0,a,φ连续可微,Q:[t_0,∞)×R→R,P:[t_0,∞)×R~2→R,Q,P为  相似文献   

9.
张宗达 《数学季刊》1991,6(3):38-41
先讨论吋变离散系统 (1) x(τ+1)=f(τ,x(τ),τ=t_0+k,k=0,1,2,…,t_0≥0。其中f:[0,∞)×D→R~n,D是R~n中包含原点的开集,f(τ,0)≡0。对每个t_0≥0和每个x_0∈D,保证(1)有唯一的解x(τ)=x(τ,t_0,x_0),具有x(t_0,t_0,x_0)=x_0。对于连续的时变系统来说,只有Liapunov函数V(t,x)正定和它关于系统的导数V(t,x)负定性是不能保证零解的渐近稳定性的,通常附加V具有无穷小上界,或限定方程右端函数F(t,x)对有界的|x|有界,或限定V(t,x)→∞,当t→∞,x≠0时才能推出零解的渐近  相似文献   

10.
一类二阶泛函微分方程解的渐近性   总被引:2,自引:1,他引:1  
对各类二阶微分方程解的性质,自1971年Hammett以来已有许多讨论,如[1]—[10]本文讨论二阶时滞泛函微分方程 (r(t)x′(t))′+sum from i=0 to n (P_i(t)g_i′(x(t-τ_i(t))))+sum from i=0 to n (q_i(t)g_i(x(t-τ_i(t))))=f(t) (1)的解的渐近性质,其中;r(t)、q_i(t)、g_i(x)、τ_i(t)、f(t)连续;p_i(t)连续可微;当p_i(t)不恒为0时,g_i(x)连续可微;当x≠0,xg_i(x)>0;g_i(x)关于x单调不减;F(u)=integral from n=to to u (|f(s)|ds)<∞;g_0(x)=x,τ_0(t)=0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号