首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
主要研究系数显含有时间和空间变量的退化抛物-双曲型方程柯西问题动力学解的唯一性.首先推广了这种类型方程的动力学公式,在给定系数适当的光滑性条件下,得到了动力学解的唯一性.  相似文献   

3.
The aim of this paper is to prove the well-posedness (existence and uniqueness) of the Lp entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with Lp initial value. We use the device of doubling variables and some technical analysis to prove the uniqueness result. Moreover we can prove that the Lp entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.  相似文献   

4.
非自治退化抛物-双曲型方程可以描述许多自然现象.主要研究这类方程的柯西问题,建立了动力学公式,在对流函数、扩散函数适当光滑性的基础上,证明了该问题动力学解的存在唯一性.  相似文献   

5.
We generalize the concept of entropy solutions for parabolic equations with L1-data and consider a class of nonlinear history-dependent degenerated elliptic-parabolic equations including problems with a fractional time derivative such as with Dirichlet boundary conditions and initial condition, where 0<γ?1. We show uniqueness of entropy solutions for general L1-data by Kruzhkov's method of doubling variables. Moreover, existence in the nondegenerated case, i.e. b≡id, is shown by using the concept of generalized solutions of a corresponding abstract Volterra equation.  相似文献   

6.
We prove the equivalence of weak solutions and entropy solutions of an elliptic-parabolic-hyperbolic degenerate equation with homogeneous Dirichlet conditions and initial conditions. As a result of the equivalence, we obtain the L1-contraction principle and uniqueness of weak solutions of elliptic-parabolic degenerate equations.  相似文献   

7.
This study focuses on nonlocal boundary value problems (BVP) for degenerate elliptic differential-operator equations (DOE), that are defined in Banach-valued function spaces, where boundary conditions contain a degenerate function and a principal part of the equation possess varying coefficients. Several conditions obtained, that guarantee the maximal Lp regularity and Fredholmness. These results are also applied to nonlocal BVP for regular degenerate partial differential equations on cylindrical domain to obtain the algebraic conditions that ensure the same properties.  相似文献   

8.
Multipoint boundary value problems for degenerate differential-operator equations of arbitrary order are studied. Several conditions for the separability in Banach-valued L p -spaces are given. Sharp estimates for the resolvent of the corresponding differential operator are obtained. In particular, the sectoriality of this operator is established. As applications, the boundary value problems for degenerate quasielliptic partial differential equations and infinite systems of differential equations on cylindrical domain are studied.  相似文献   

9.
We consider a hyperbolic conservation law posed on an (N+1)-dimensional spacetime, whose flux is a field of differential forms of degree N. Generalizing the classical Kuznetsov’s method, we derive an L1 error estimate which applies to a large class of approximate solutions. In particular, we apply our main theorem and deal with two entropy solutions associated with distinct flux fields, as well as with an entropy solution and an approximate solution. Our framework encompasses, for instance, equations posed on a globally hyperbolic Lorentzian manifold.  相似文献   

10.
The boundary value problems for the degenerate differential-operator equations with small parameters generated on all boundary are studied. Several conditions for the separability and the fredholmness in Banach-valued Lp-spaces of are given. In applications, maximal regularity of degenerate Cauchy problem for parabolic equation arising in atmospheric dispersion of pollutants studied.  相似文献   

11.
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H ?1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.  相似文献   

12.
We study the existence of (generalized) bounded solutions existing for all times for nonlinear parabolic equations with nonlinear boundary conditions on a domain that is bounded in space and unbounded in time (the entire real line). We give a counterexample which shows that a (weak) maximum principle does not hold in general for linear problems defined on the entire real line in time. We consider a boundedness condition at minus infinity to establish (one-sided) L-a priori estimates for solutions to linear boundary value problems and derive a weak maximum principle which is valid on the entire real line in time. We then take up the case of nonlinear problems with (possibly) nonlinear boundary conditions. By using comparison techniques, some (delicate) a priori estimates obtained herein, and nonlinear approximation methods, we prove the existence and, in some instances, positivity and uniqueness of strong full bounded solutions existing for all times.  相似文献   

13.
We are concerned with entropy solutions of the 2×2 relativistic Euler equations for perfect fluids in special relativity. We establish the uniqueness of Riemann solutions in the class of entropy solutions in LBVloc with arbitrarily large oscillation. Our proof for solutions with large oscillation is based on a detailed analysis of global behavior of shock curves in the phase space and on special features of centered rarefaction waves in the physical plane for this system. The uniqueness result does not require specific reference to any particular method for constructing the entropy solutions. Then the uniqueness of Riemann solutions yields their inviscid large-time stability under arbitrarily largeL1LBVloc perturbation of the Riemann initial data, as long as the corresponding solutions are in L and have local bounded total variation that allows the linear growth in time. We also extend our approach to deal with the uniqueness and stability of Riemann solutions containing vacuum in the class of entropy solutions in L with arbitrarily large oscillation.  相似文献   

14.
We analyze a class of weakly differentiable vector fields F : ?n → ?n with the property that FL and div F is a (signed) Radon measure. These fields are called bounded divergence‐measure fields. The primary focus of our investigation is to introduce a suitable notion of the normal trace of any divergence‐measure field F over the boundary of an arbitrary set of finite perimeter that ensures the validity of the Gauss‐Green theorem. To achieve this, we first establish a fundamental approximation theorem which states that, given a (signed) Radon measure μ that is absolutely continuous with respect to ??N ? 1 on ?N, any set of finite perimeter can be approximated by a family of sets with smooth boundary essentially from the measure‐theoretic interior of the set with respect to the measure ||μ||, the total variation measure. We employ this approximation theorem to derive the normal trace of F on the boundary of any set of finite perimeter E as the limit of the normal traces of F on the boundaries of the approximate sets with smooth boundary so that the Gauss‐Green theorem for F holds on E. With these results, we analyze the Cauchy flux that is bounded by a nonnegative Radon measure over any oriented surface (i.e., an (N ? 1)‐dimensional surface that is a part of the boundary of a set of finite perimeter) and thereby develop a general mathematical formulation of the physical principle of the balance law through the Cauchy flux. Finally, we apply this framework to the derivation of systems of balance laws with measure‐valued source terms from the formulation of the balance law. This framework also allows the recovery of Cauchy entropy flux through the Lax entropy inequality for entropy solutions of hyperbolic conservation laws. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
This paper proves a theorem on the decay rate of the oscillatory integral operator with a degenerate C^∞ phase function, thus improving a classical theorem of HSrmander. The proof invokes two new methods to resolve the singularity of such kind of operators: a delicate method to decompose the operator and balance the L^2 norm estimates; and a method for resolution of singularity of the convolution type. The operator is decomposed into four major pieces instead of infinite dyadic pieces, which reveals that Cotlar's Lemma is not essential for the L^2 estimate of the operator. In the end the conclusion is further improved from the degenerate C^∞ phase function to the degenerate C^4 phase function.  相似文献   

16.
The current paper is devoted to stochastic Ginzburg–Landau–Newell equation with degenerate random forcing. The existence and pathwise uniqueness of strong solutions with H1‐initial data is established, and then the existence of an invariant measure for the Feller semigroup is shown by Krylov–Bogoliubov theorem. Because of the coupled items in the stochastic Ginzburg–Landau–Newell equations, the higher order momentum estimates can be only obtained in the L2‐norm. We show the ergodicity of invariant measure for the transition semigroup by asymptotically strong Feller property and the support property. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this paper is to study a class of semilinear elliptic boundary value problems with degenerate boundary conditions which include as particular cases the Dirichlet problem and the Robin problem. The approach here is based on the super‐sub‐solution method in the degenerate case, and is distinguished by the extensive use of an Lp Schauder theory elaborated for second‐order, elliptic differential operators with discontinuous zero‐th order term. By using Schauder's fixed point theorem, we prove that the existence of an ordered pair of sub‐ and supersolutions of our problem implies the existence of a solution of the problem. The results extend an earlier theorem due to Kazdan and Warner to the degenerate case. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

18.
In this paper, we study the asymptotic behavior for the incompressible anisotropic Navier–Stokes equations with the non-slip boundary condition in a half space of ${\mathbb{R}^3}$ when the vertical viscosity goes to zero. Firstly, by multi-scale analysis, we formally deduce an asymptotic expansion of the solution to the problem with respect to the vertical viscosity, which shows that the boundary layer appears in the tangential velocity field and satisfies a nonlinear parabolic–elliptic coupled system. Also from the expansion, it is observed that away from the boundary the solution of the anisotropic Navier–Stokes equations formally converges to a solution of a degenerate incompressible Navier–Stokes equation. Secondly, we study the well-posedness of the problems for the boundary layer equations and then rigorously justify the asymptotic expansion by using the energy method. We obtain the convergence results of the vanishing vertical viscosity limit, that is, the solution to the incompressible anisotropic Navier–Stokes equations tends to the solution to degenerate incompressible Navier–Stokes equations away from the boundary, while near the boundary, it tends to the boundary layer profile, in both the energy space and the L space.  相似文献   

19.
The boundary value problems for differential-operator equations with variable coefficients, degenerated on all boundary are studied. Several conditions for the separability, fredholmness and resolvent estimates in L p -spaces are given. In applications degenerate Cauchy problem for parabolic equation, boundary value problems for degenerate partial differential equations and systems of degenerate elliptic equations on cylindrical domain are studied.  相似文献   

20.
For a third-order equation of the parabolic-hyperbolic type, we suggest a method for studying a boundary value problem by solving the inverse problem for a second-order equation of the mixed parabolic-hyperbolic type with unknown right-hand side depending implicitly on time. We prove a criterion for the uniqueness of the solution of the boundary value problem constructed in the form of the sum of a series in the eigenfunctions of the corresponding one-dimensional Sturm-Liouville problem. We prove the stability of the solution with respect to the boundary data in the norms of the spaces W 2 n [0, 1] and $C\left( {\bar D} \right)$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号