首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
A periodic predator–prey-chain system with impulsive effects is considered. By using the global results of Rabinowitz and standard techniques of bifurcation theory, the existence of its trivial, semi-trivial and nontrivial positive periodic solutions is obtained. It is shown that the nontrivial positive periodic solution for such a system may be bifurcated from an unstable semi-trivial periodic solution. Furthermore, the stability of these periodic solutions is studied.  相似文献   

2.
The complex dynamics of a Holling type II prey–predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincaré map and the analogue of the Poincaré criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed.  相似文献   

3.
In this paper, a predator–prey system which based on a modified version of the Leslie–Gower scheme and Holling-type II scheme with impulsive effect are investigated, where all the parameters of the system are time-dependent periodic functions. By using Floquet theory of linear periodic impulsive equation, some conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are obtained. It is proved that the system can be permanent if all the trivial and semi-trivial periodic solutions are linearly unstable. We use standard bifurcation theory to show the existence of nontrivial periodic solutions which arise near the semi-trivial periodic solution. As an application, we also examine some special case of the system to confirm our main results.  相似文献   

4.
In this paper we consider a Lotka–Volterra prey–predator model with cross-diffusion of fractional type. The main purpose is to discuss the existence and nonexistence of positive steady state solutions of such a model. Here a positive solution corresponds to a coexistence state of the model. Firstly we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system. Secondly we derive some necessary conditions to ensure the existence of positive solutions, which demonstrate that if the intrinsic growth rate of the prey is too small or the death rate (or the birth rate) of the predator is too large, the model does not possess positive solutions. Thirdly we study the sufficient conditions to ensure the existence of positive solutions by using degree theory. Finally we characterize the stable/unstable regions of semi-trivial solutions and coexistence regions in parameter plane.  相似文献   

5.
In this paper, a periodic predator–prey system with distributed time delays and impulsive effect is investigated. By using the Floquet theory of linear periodic impulsive equation, some conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are obtained. It is proved that the system can be permanent if all the trivial and semi-trivial periodic solutions are linearly unstable. We improve some results in Guo and Chen (2009) [1].  相似文献   

6.
In this paper, we study dynamics of a prey-predator system under the impulsive control. Sufficient conditions of the existence and the stability of semi-trivial periodic solutions are obtained by using the analogue of the Poincaré criterion. It is shown that the positive periodic solution bifurcates from the semi-trivial periodic solution through a transcritical bifurcation. A strategy of impulsive state feedback control is suggested to ensure the persistence of two species. Furthermore, a steady positive period-2 solution bifurcates from the positive periodic solution by the flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations. Numerical simulations are also illustrated which agree well with our theoretical analysis.  相似文献   

7.
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.  相似文献   

8.
One predator two prey system is a research topic which has both the theoretical and practical values.This paper provides a natural condition of the existence of stable pcsitive steady-state solutions for the one predator two prey system.Under this conditon we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem,discuss the positive stable solution problem bifureated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.  相似文献   

9.
The dynamics of a predator–prey model with impulsive state feedback control, which is described by an autonomous system with impulses, is studied. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincaré map and analogue of the Poincaré criterion. The qualitative analysis shows that the positive period-1 solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams of periodic solutions are obtained by using the Poincaré map, and it is shown that a chaotic solution is generated via a cascade of period-doubling bifurcations.  相似文献   

10.
谭德君 《应用数学》2006,19(4):749-758
本文讨论一类具有脉冲效应和周期系数的两个食饵一个捕食者的捕食-食饵系统的动力学行为.利用脉冲微分方程比较定理和乘子理论,证明了系统的有界性,讨论了平凡周期解和半平凡周期解的稳定性,利用重合度的理论给出了系统存在周期正解的充分条件.  相似文献   

11.
The aim of this paper is to investigate the asymptotic behavior of time-dependent solutions of a three-species reaction–diffusion system in a bounded domain under a Neumann boundary condition. The system governs the population densities of a competitor, a competitor–mutualist and a mutualist, and time delays may appear in the reaction mechanism. It is shown, under a very simple condition on the reaction rates, that the reaction–diffusion system has a unique constant positive steady-state solution, and for any nontrivial nonnegative initial function the corresponding time-dependent solution converges to the positive steady-state solution. An immediate consequence of this global attraction property is that the trivial solution and all forms of semitrivial solutions are unstable. Moreover, the state–state problem has no nonuniform positive solution despite possible spatial dependence of the reaction and diffusion. All the conclusions for the time-delayed system are directly applicable to the system without time delays and to the corresponding ordinary differential system with or without time delays.  相似文献   

12.
A two-species Lotka-Volterra competition-diffusion model with spatially inhomogeneous reaction terms is investigated. The two species are assumed to be identical except for their interspecific competition coefficients. Viewing their common diffusion rate μ as a parameter, we describe the bifurcation diagram of the steady states, including stability, in terms of two real functions of μ. We also show that the bifurcation diagram can be rather complicated. Namely, given any two positive integers l and b, the interspecific competition coefficients can be chosen such that there exist at least l bifurcating branches of positive stable steady states which connect two semi-trivial steady states of the same type (they vanish at the same component), and at least b other bifurcating branches of positive stable steady states that connect semi-trivial steady states of different types.  相似文献   

13.
Coupled systems for a class of quasilinear parabolic equations and the corresponding elliptic systems, including systems of parabolic and ordinary differential equations are investigated. The aim of this paper is to show the existence, uniqueness, and asymptotic behavior of time-dependent solutions. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i=1,…,N, and the boundary condition is ui=0. Using the method of upper and lower solutions, we show that a unique global classical time-dependent solution exists and converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a scalar polynomial growth problem, a coupled system of polynomial growth problem, and a two component competition model in ecology.  相似文献   

14.
In this paper, we investigate a classical periodic Lotka–Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses.  相似文献   

15.
Intraguild predation is added to a mathematical model of competition between two species for a single nutrient with internal storage in the unstirred chemostat. At first, we established the sharp a priori estimates for nonnegative solutions of the system, which assure that all of nonnegative solutions belong to a special cone. The selection of this special cone enables us to apply the topological fixed point theorems in cones to establish the existence of positive solutions. Secondly, existence for positive steady state solutions of intraguild prey and intraguild predator is established in terms of the principal eigenvalues of associated nonlinear eigenvalue problems by means of the degree theory in the special cone. It turns out that positive steady state solutions exist when the associated principal eigenvalues are both negative or both positive.  相似文献   

16.
研究了一类Neumann边界条件下带有保护区域的Leslie-Gower捕食-食饵模型,分析稳态系统从半平凡解处发生分歧的条件,得到了分歧方向及分歧值的唯一性,得到了在确定参数范围内,从半平凡解出发的分支解曲线的稳定性.  相似文献   

17.
We discuss the generation and motion of interfaces for Lotka-Volterra competition-diffusion system with large interaction. An asymptotic analysis of solutions shows that the two competing species are segregated and an interface appears on the common boundary of their habitats. The motion of the interface is governed by a free boundary problem. In this paper we establish a mathematical theory for the formation of interfaces (at the initial stage) by using an upper and lower solutions method. In addition, combining our results and a known result for the motion of interfaces (after the initial stage), we obtain some information on the generation and motion of interfaces for given almost any smooth initial data.  相似文献   

18.
This paper analyzes the limiting behavior of the positive solutions of a general class of sublinear elliptic weighted mixed boundary value problems as the amplitude of the positive part of the lower order terms of the differential operator blows up to infinity. The main result establishes that the positive solutions approximate zero within the support of the positive part of the potential, whereas they stabilize to the positive solution of a certain elliptic mixed boundary value problem on its complement. Further, we use this result for deriving some general principles in competing species dynamics. Precisely, we shall show that in the presence of a refuge region two competing species must coexist if their reproduction rates are sufficiently large, independently of the strength of the competition. It should be emphasized that the abstract theory developed here allows measuring how large the reproduction rates should be for being permanent, providing us, simultaneously, with the limiting behavior of each of the species separately. Basically, when the pressure from the competitor grows the tackled species concentrates within its refuge. The results of this paper are substantial extensions of some pioneer results found by one of the authors in [16, Section 4]. The main ingredients in deriving the main results of this paper are the continuous dependence of the principal eigenvalue with respect to a general class of perturbations of the domain around its Dirichlet boundary – very recent result coming from [6] – and the continuous dependence of the positive solutions of the sublinear problem – coming from [7].  相似文献   

19.
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka–Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c? such that for each wave speed c?c?, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c<c? are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c>c?.  相似文献   

20.
In a previous work [16], Lou et al. studied a Lotka–Volterra competition–diffusion–advection system, where two species are supposed to differ only in their advection rates and the environment is assumed to be spatially homogeneous and closed (no-flux boundary condition), and showed that weaker advective movements are more beneficial for species to win the competition. In this paper, we aim to extend this result to a more general situation, where the environmental heterogeneity is taken into account and the boundary condition at the downstream end becomes very flexible including the standard Dirichlet, Neumann and Robin type conditions as special cases. Our main approaches are to exclude the existence of co-existence (positive) steady state and to provide a clear picture on the stability of semi-trivial steady states, where we introduced new ideas and techniques to overcome the emerging difficulties. Based on these two aspects and the theory of abstract competitive systems, we achieve a complete understanding on the global dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号