首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Zinc phosphinate (Exolit OP950), nanosilica particles and polyethylene terephthalate (PET) have been blended and thereafter melt‐spinned to develop a new flame retardant (FR) system for PET textiles. The effects of the two types of nanosilica fillers on the wettability, dispersibility and thermal properties were studied to determine how the degree of hydrophilicity affects the PET matrix. The influence of the blends on thermal transitions has been investigated by differential scanning calorimetry (DSC), the thermal stability of the polymer/FR blend composites has been assessed by thermogravimetric analysis (TGA) and cone calorimetry has been used to study the fire reaction. It was noticed that the nanoparticles have a limited influence on the thermal transitions of the PET matrix, but zinc phosphinate acted as a plasticizer and a compatibilizer for the more hydrophobic particles. Thermogravimetric analysis results showed that the addition of silica particles and FR compound improves slightly the thermal stability of the PET systems under nitrogen and air atmospheres. Furthermore, it was noticed that the incorporation of nanoparticles gives almost no improvement in the PET fire reaction from cone calorimeter experiments. However, in the presence of Exolit OP950, the systems acted as FR in PET films and knitted structures. The heat release rate during the combustion decreased, and the thermal behaviors of these structures were closed to those with 10% wt of Exolit OP950. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Synergy in flame retardancy of polyurethane foams between phosphorus-based flame retardant (aluminium phosphinate) and layered silicates has been investigated. We used pristine montmorillonite as well as ammonium modified clay (commercially available) and diphosphonium modified clay, which were synthesised by the intercalation of the quaternary diphosphonium salt according to a procedure reported here. The morphology of the foams was characterised through X-ray diffraction (XRD), while thermal properties were characterised by oxygen index test, cone calorimeter and thermogravimetric analysis (TGA). The morphological characterisation showed that pristine and diphosphonium modified clays are almost slightly intercalated, while ammonium modified one is very well dispersed. The results of thermal characterisation showed that in the presence of phosphinate enhancements of oxygen index, fire behaviour, measured by cone calorimeter, and thermal stability have been achieved. Phosphinate is therefore an efficient flame retardant for polyurethane foams and its flame retardancy action takes place in both condensed and gas phases. Pristine and ammonium modified layered silicate bring some enhancements of thermal stability while having no important effect in decreasing peak heat release rate (PHRR) and total heat evolved (THE) when used in conjunction with phosphinate; their main advantage is related to the enhancement of compactness of the char layer formed. Diphosphonium clay is instead effective in further improving the fire behaviour of the foams because of the flame retardancy action of phosphonium: both PHRR and THE were decreased. The analysis of cone calorimeter data showed that clays act through physical effect constituting a barrier at the surface which is effective in preventing or slowing the diffusion of volatiles and oxygen, while phosphinate and phosphonium are more effective owing to their combined action in both condensed and gas phases.  相似文献   

3.
Polyethylene (PE) was treated with various formulations containing an intumescent fire retardant, which consists of melamine phosphate (MP), pentaerythritol (PER) and ammonium polyphosphate (APP), and one or none of following metal chelates: CuSAO, CoSAO and NiSAO. The behaviour of this intumescent system can be enhanced significantly by the addition of small amounts (0.2%) of metal chelate (CuSAO, CoSAO and NiSAO). The thermal stabilization, burning behaviour and char formation of the fire retardant PE system have been investigated by TGA, LOI, UL-94 test, SEM and cone calorimetry. All formulations studied provide good fire retardant behaviour, with LOI ≥ 27.4 and UL-94 V-0 rating. TGA results present more complicated thermal decomposition behaviour after the addition of small amounts (0.2%) of metal chelate when compared to that of PE-IFR. Cone calorimetry of PE-IFR–metal chelate (PE-IFR–CuSAO, PE-IFR–CoSAO and PE-IFR–NiSAO) shows a very significant decrease in HRR, PHRR, ML, THR and a very significant improvement of TTI compared to samples without metal chelate. Furthermore, SEM and photographs of the char layer show that the char layer from PE-IFR–metal chelate has a compact and tough char structure compared to the open porous char layer produced by sample without metal chelate.  相似文献   

4.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

5.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

6.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM.  相似文献   

7.
Piperazine cyanurate (PCA) is designed and synthesized via hydrogen‐bonding self‐assembly reactions between piperazine and cyanuric acid. Chemical structure and morphology of PCA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The prepared PCA is combined with ammonium polyphosphate (APP) to prepare flame‐retardant polypropylene (PP) composites. Thermostability, flammability, and combustion characteristics of PP composites are analyzed. The maximum thermal decomposition rate of flame‐retarded PP composites has an apparent reduction compared with that of pure PP, and obvious char is left for this intumescent flame retardant (IFR) system of APP and PCA. A high limiting oxygen index value and UL‐94 V‐0 rating are achieved with addition of APP and PCA. In cone calorimetry test, heat and smoke releases of PP are significantly decreased by this IFR system. Gaseous decomposition products during the thermal decomposition of flame‐retardant composites are studied. Chemical structure and morphology of char residues are analyzed. The results illustrate that APP and PCA have a superb synergistic action in the aspect of improvement in fire safety of PP. A possible flame‐retardant mechanism is concluded to reveal the synergism between APP and PCA.  相似文献   

8.
In order to compare their inherent flame retardancy and thermal stability, two phosphorus-containing thermotropic liquid crystalline copolyesters (P-TLCP) were synthesized by melting transesterification. Additionally based on the facts that the P-TLCP can work as a functional additive to enhance the flame retardancy and mechanical property of PET, we further studied the flame retardant mechanism. Scanning Electronic Microscope (SEM) observations show that the char from PET/P-TLCP is more compact, therefore more efficiently resists fire and heat attack than pure PET. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) measurements of evolved gas, indicate that P-TLCP decomposes to produce phosphorus-containing small molecular compounds during the pyrolysis process, such that P-TLCP could play a flame retardant role in vapour phase. Furthermore, P-TLCP strongly inhibits the generation of combustible compounds in the pyrolysis of PET, which also helps to resist fire propagation.  相似文献   

9.
The combination of organophillised montmorillonite (MMT), synthetic hydromagnesite and aluminium hydroxide (ATH) as flame retardant system for polyethylene-based materials was studied and compared with a similar system with magnesium hydroxide, ATH and MMT. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), limiting oxygen index (LOI) and cone calorimeter tests. The results indicated that the addition of montmorillonite makes it possible to reduce the total filler content to achieve the flame retardant requirements. The thermal stability of filled LDPE/EVA blends increases to a higher extent for the samples containing MMT. In the cone calorimeter tests we observed a reduction of the peak heat release rate for the sample containing montmorillonite in comparison with a sample with higher filler loading without this nanoclay. An increase of the stability of the char formed could be responsible for this favourable behaviour when montmorillonite is added.In addition, mechanical properties significantly improved for the composites containing montmorillonite both for the filler loading reduction and the reinforcement effect of the nanoclay.  相似文献   

10.
The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter.  相似文献   

11.
Five types of melamine-formaldehyde microcapsules, that is, with shells of different compositions [melamine formaldehyde shell or a melamine formaldehyde-poly(hexamethylene adipate glycol) shell] and containing or not a flame retardant, diammonium hydrogen phosphate (DAHP), have been prepared by an in situ polymerization method and have been added to an isotactic polypropylene matrix (iPP) by melt blending at 5 wt %. Wide-angle X-ray diffraction and differential scanning calorimetry were employed to investigate the crystallization behavior of the prepared iPP/microparticles composites. The tensile properties and the thermal stability were also evaluated. It was stated that the morphology and the shape of the microparticles not only influence the crystallization behavior but also the thermomechanical properties of these composites. Thus, rougher microparticles act as a nucleating agent for the iPP, and in the presence of microparticles containing DAHP, the α- and the β-crystals are formed. Moreover, the presence of microparticles improves the thermal stability of the iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2566–2576, 2008  相似文献   

12.
The choice of charring agent is one of the major issues for solvent‐free fireproof coatings. The effects of processing method and charring agent on the thermal insulation and fire resistance of the coatings were investigated in simulated fire scenarios. Dipentaerythritol (DPER), triazine agent (CFA), and pentaerythritol phosphate (PEPA) were compared as charring agent, and the thermal, combustion, fire resistance, and charring behaviors in different fire scenario were characterized for the fireproof coatings. Compared with high‐speed dispersing equipment, kneading processing equipment is favorable for improving the thermal stability and fire resistance of the coatings, because the stronger shearing force has promoted mixing and dispersion of the ingredients in solvent‐free fireproof coatings. As for charring agents, it is found that the fireproof coatings containing CFA or PEPA show better thermal and flame‐retardant performances. More residue was observed under nitrogen atmosphere in thermogravimetric analysis, less heat and smoke were released in cone calorimetry test. However, during the high temperature fire resistance test, their char layers were prone to delaminate while DPER‐containing coatings produced intact and stronger char layer with better heat insulation. For practical applications, the coating formulations need to be optimized to achieve both fire resistance and flame retardancy.  相似文献   

13.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

14.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

15.
《先进技术聚合物》2018,29(1):497-506
A novel phosphorus‐containing, nitrogen‐containing, and sulfur‐containing reactive flame retardant (BPD) was successfully synthesized by 1‐pot reaction. The intrinsic flame‐retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol‐A (DGEBA). Thermal stability, flame‐retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame‐retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA‐FTIR), pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD‐1.0 thermoset achieved LOI value of 39.1% and UL94 V‐0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av‐HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD‐1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD‐0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD‐0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus‐rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus‐containing free radicals and nitrogen/sulfur‐containing inert gases in gaseous phase. There was flame‐retardant synergism between phosphorus, nitrogen, and sulfur of BPD.  相似文献   

16.
A novel inorganic-organic hybrid synergistic flame retardant was prepared by sol-gel reaction and characterized by NMR and FT-IR. It showed that the fire resistance of polypropylene/intumescent flame retardant (PP/IFR) composites could be improved with the combination of hybrid synergistic flame retardant. The char morphology and structure of PP composites were characterized by SEM and Raman spectra. The influence of the hybrid flame retardant on the thermal degradation process of PP composites was analyzed by FT-IR and the rheological behavior of the PP composites was also evaluated. The thermal stability of PP composites was characterized by TGA, weight loss difference and integral procedural decomposition temperature (IPDT). It indicated that the hybrid synergistic flame retardant had good synergistic effect with IFR.  相似文献   

17.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, an organic inorganic hybrid intumescent flame retardant (functionalized expandable graphite, FEG) was synthesized and characterized by Fourier transform infrared spectrometry (FTIR). The flame retardant effects of FEG in silicone rubber (SR) composites were investigated by cone calorimeter test (CCT), and the thermal stability of SR composites was studied using TGA. The CCT results showed that FEG can effectively reduce the flammable properties including peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), total smoke release (TSR), and smoke factor (SF). An improvement of thermal stability of SR/FEG was also observed. Compared with EG, FEG can further reduce THR, SPR, and TSR of SR/FEG composites in combustion process. Moreover, there is a more obvious intumescent char layer formed from the sample with FEG than the sample with EG at the same loading in SR composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, based on castor oil (CO), flame retardant polyurethane sealants (FRPUS) with ammonium polyphosphate (APP) and aluminum hypophosphite (AHP) were prepared. The synergistic flame retardant effects between APP and AHP on flame retardancy, thermal stability, and flame retardant mechanisms of FRPUS were investigated. It was found that when the mass ratio of APP and AHP was 5:1, the limiting oxygen index (LOI) value of FRPUS increased to 35.1%, In addition, at this ratio, the parameters from cone calorimeter testing (CCT) were reduced; these parameters include peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR) and total smoke production (TSP). The thermal decomposition behavior of the FRPUS was investigated by thermogravimetric analysis (TGA). The results showed that AHP improved the thermal stability of the PUS/APP system and increased char residue at high temperatures. Moreover, the residual carbon was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM), gas phase pyrolysis products were investigated by thermogravimetric analysis/infrared spectrometry (TG-IR) and thermogravimetric analysis/mass spectrometry (TG-MS). It was observed that the flame retardant mechanisms of the APP/AHP system was the combination of gas and condensed phase flame retardant mechanisms.  相似文献   

20.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号