首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of environmentally benign polyelectrolytes, cationic chitosan (CH) and anionic poly(sodium phosphate) (PSP), were deposited on cotton fabric via layer-by-layer (LbL) assembly to reduce flammability. This CH–PSP nanocoating promotes charring of the cotton, rendering the fabric self-extinguishing. The coated fabric was rinsed in an ultrasonication bath between deposition steps to improve the softness (i.e., hand) of the coated fabric. Ultrasonication is believed to remove weakly adhered polyelectrolyte, preventing the fabric from becoming stiff, while improving anti-flammable behavior at a given coating weight. At 17 bilayers, only 9.1 wt% was added to the cotton, yet the coated cotton consistently passed vertical flame testing. Electron microscopy provides evidence of intumescence and confirms the cleaner deposition afforded by ultrasonication. The reduction in peak heat release rate and total heat release, as measured by micro cone calorimetry, were 73 and 81 % respectively, which is a new benchmark in LbL flame retardant coating on cotton. The mechanical properties of the fabric were measured using the Kawabata evaluation system, which showed that ultrasonication rinsing significantly improved the hand. The ability to render cotton fabric self-extinguishing, while maintaining a soft hand, marks a major milestone in the development of these environmentally-benign nanocoatings.  相似文献   

2.
The layer-by-layer (LbL) assembly of salt-containing nonstoichiometric polyelectrolyte complexes (PECs) with oppositely charged uncomplexed polyelectrolyte for the fabrication of dewetting-induced porous polymeric films has been systematically investigated. Salt-containing poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complexes (noted as PAH-PAA) with a molar excess of PAH were LbL assembled with polyanion poly(sodium 4-styrenesulfonate) (PSS) to produce PSS/PAH-PAA films. The structure of the PAH-PAA complexes is dependent on the concentration of NaCl added to their aqueous dispersions, which can be used to tailor the structure of the LbL-assembled PSS/PAH-PAA films. Porous PSS/PAH-PAA films are fabricated when salt-containing PAH-PAA complexes with a large amount of added NaCl are used for LbL assembly with PSS. In-situ and ex-situ atomic force microscopy measurements disclose that the dewetting process composed of pore nucleation and pore growth steps leads to the formation of pores in the LbL-assembled PSS/PAH-PAA films. The present study provides a facile way to fabricate porous polymeric films by dewetting LbL-assembled polymeric films comprising salt-containing PECs.  相似文献   

3.
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.  相似文献   

4.
A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Conventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonic acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.  相似文献   

5.
Polyelectrolyte multilayer films adsorbed on gold surfaces were studied by combined ellipsometric and electrochemical methods. Multilayers were composed of “synthetic” (poly(4-styrenesulfonic acid) ammonium salt (PSS) and poly(allylamine hydrochloride) (PAH) (PSS/PAH)) and “semi-natural” (carboxymethyl cellulose (CMC) and chitosan (CHI) (CMC/CHI)) polyelectrolytes. It was found that only PSS/PAH Layer-by-Layer (LbL) assembled structures result in dense surface confined films that limit permeability of small molecules, such as ferri-/ferrocyanide. The PSS/PAH assemblies can be envisaged as films with pinholes, through which small molecules diffuse. During the LbL deposition process of these films a number of pinholes quickly decay. A representative pinhole diameter was found to be approximately 20 μm, which determines the diffusion of small molecules through LbL films, and yet remains constant when the film consists of a few LbL assembled polyelectrolyte bilayers. CMC/CHI LbL assemblies at gold electrode surfaces give very low density films, which do not limit the diffusion of ferri-/ferrocyanide between the surface of the electrode and the solution.  相似文献   

6.
Novel layer-by-layer (LbL) assembly films composed of poly( L-lysine) (PLL) and poly( D-lactic acid) (PDLA) were prepared by the alternate immersion of a gold substrate into an aqueous PLL solution and an acetonitrile solution of PDLA. The formation of the LbL assembly film was confirmed by quartz crystal microbalance (QCM) analysis, atomic force microscopy observation, and attenuated total reflection Fourier transform infrared spectroscopy measurement. The driving force responsible for the LbL assembly was determined by investigating the formation behavior of the LbL assembly under various conditions. The formation of the LbL assembly was not affected either by the stereochemistry of polylysine and poly(lactic acid) or by the addition of urea, which is known to inhibit hydrogen bonding interaction between polymers, into the aqueous PLL solution. The LbL assembly was also formed by the combination of PDLA and polycations other than polylysine, such as poly(diallyldimethylammonium chloride). On the other hand, the combination of PDLA and any polyanions such as poly(styrene sulfonate sodium salt) produced little corresponding LbL assembly. The increase in positive charge on the amino nitrogen atom of PLL enhanced the LbL assembly. These results suggest that the LbL assembly film composed of PLL and PDLA was fabricated by cation-dipole interactions between the positive charge on the amino nitrogen atom of PLL and the lone pairs of the carbonyl oxygen atom of PDLA.  相似文献   

7.
Summary: Single polyelectrolyte component microcapsules and multilayers, exemplified by poly(allylamine hydrochloride) (PAH), have been prepared using a method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly. The GA cross‐linking of the adsorbed PAH results in surfaces covered by reactive aldehyde groups, which can then react with PAH to result in another layer of covalently linked PAH. The repeated assembly of single polyelectrolyte in an LbL manner can be thus achieved. The PAH multilayers can grow linearly along with the layer number, and their thickness can be controlled at the nanometer scale, as verified by UV‐vis absorption spectrometry and ellipsometry. Single polyelectrolyte microcapsules are obtained after removal of the template cores at low pH. The morphology and integrity are confirmed by scanning force microscopy and confocal laser scanning microscopy.

Schematic illustration of the preparation of a single polyelectrolyte component microcapsule by GA‐mediated covalent LbL assembly.  相似文献   


8.
In this article, we report a bioinspired approach to preparing stable, functional multilayer films by the integration of mussel-inspired catechol oxidative chemistry into a layer-by-layer (LbL) assembly. A polyanion of poly(acrylic acid-g-dopamine) (PAA-dopamine) bearing catechol groups, a mussel adhesive protein-mimetic polymer, was synthesized as the building block for LbL assembly with poly(allylamine hydrochloride) (PAH). The oxidization of the incorporated catechol group under mild oxidative condition yields o-quinone, which exhibits high reactivity with amine and catechol, thus endowing the chemical covalence and retaining the assembled morphology of multilayer films. The cross-linked films showed excellent stability even in extremely acidic, basic, and highly concentrated aqueous salt solutions. The efficient chemical cross-linking allows for the production of intact free-standing films without using a sacrificial layer. Moreover, thiol-modified multilayer films with good stability were exploited by a combination of thiols-catechol addition and then oxidative cross-linking. The outstanding stability under harsh conditions and the facile functionalization of the PAA-dopamine/PAH multilayer films make them attractive for barriers, separation, and biomedical devices.  相似文献   

9.
彭懋 《高分子科学》2014,32(3):305-314
A novel intumescent flame retardant coating,consisting of poly(vinylphosphonic acid)(PVPA) as the acid source and branched polyethylenimine(BPEI) as the blowing agent,was constructed on the surface of ramie fabrics by alternate assembly to remarkably improve the flame retardancy of ramie.The PVPA/BPEI coating on the surface of individual fibers of ramie fabric pyrolyzes to form protective char layer upon heating/burning and improves the flame retardancy of ramie.Thermogravimetric analysis reveals that the PVPA/BPEI-coated ramie fabrics left as much as 25.8 wt% residue at 600 °C,while the control(uncoated) fabric left less than 1.4 wt% residue.Vertical flame test shows that all PVPA/BPEI-coated fabrics have shorter after-flame time,and the residues well preserved the original weave structure and fiber morphology,whereas,the uncoated fabric left only ashes.Microscale combustion calorimetry shows that the PVPA/BPEI coatings greatly reduce the total heat release by as much as 66% and the heat release capacity by 76%,relative to those of the uncoated fabric.  相似文献   

10.
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.  相似文献   

11.
Using the layer-by-layer (LbL) assembly technique, we create a polymer-clay structure from a unique combination of LbL materials: poly(ethylene imine), Laponite clay, and poly(ethylene oxide). This trilayer LbL structure is assembled using a combination of hydrogen bonding and electrostatic interactions. The films were characterized using ellipsometry, profilometry, X-ray photon spectroscopy, atomic force microscopy, scanning electron microscopy, wide-angle X-ray diffraction, grazing-incidence small-angle X-ray scattering, and electrochemical impedance spectroscopy (EIS). We observe a layered, anisotropic structure, which resulted in in-plane ion transport 100 times faster than cross-plane at 0% relative humidity. This study represents a first application of EIS in determining anisotropic ion transport in LbL assemblies and its correlation to structural anisotropy.  相似文献   

12.
This paper describes the fabrication of polyelectrolyte multilayer film which combines preassembly of poly(allylamine hydrochloride) (PAH) and 5,10,15,20-tetraphenyl-21H,23H-porphine-p,p',p' ',p' '-tetrasulfonic acid tetrasodium hydrate (TPPS) in aqueous solution with the layer-by-layer (LbL) assembly of the PAH-TPPS complex and cross-linkable polyelectrolyte, PAASH60, which is a poly(acrylic acid) with 60% of its carboxylic acid grafted of thiol groups. During preassembly, TPPS was incorporated into PAH chains. After oxidative cross-linking to form disulfide bonds in between the layers, the multilayer with preassembly of the PAH-TPPS complex allowed for release and loading of TPPS in a reproducible way. The release of TPPS from the loaded film was a pH-controlled process. To compare with the conventional multilayer, the reloading capacity was greatly enhanced, which was related to the charge binding sites that formed by release of TPPS from the multilayer. Moreover, the release of TPPS could also be achieved by breaking off the cross-linking through reduction of disulfide bonds, and the release rates could be controlled by the reductive efficiency of the reductants in the media. In this way, the release of TPPS is pH/reductant dually controllable, thereby facilitating a new route to multistimuli controllable materials.  相似文献   

13.
Enhancing the molecular loading capability of layer-by-layer(LbL)method holds high importance in environmental and biomedical application.Here,we reported a strategy to prepare highly loaded poly(acrylic acid)(PAA)/poly(allylamine hydrochloride)(PAH)LbL films by combining the particulate templating strategy and acid treatment film transformation and realized tlae efficient loading of hydrophilic small molecules.The loaded molecules can be released in a pH-controlled manner.A slow release speed was observed in the acidic solutions with pH value of 3.Abrupt releases were observed at higher pH values(5 or 7).  相似文献   

14.
Thin films of colloidal silica were deposited on cotton fibers via layer-by-layer (LbL) assembly in an effort to reduce the flammability of cotton fabric. Negatively charged silica nanoparticles of two different sizes (8 and 27 nm) were paired with either positively charged silica (12 nm) or cationic polyethylenimine (PEI). PEI/silica films were thicker due to better (more uniform) deposition of silica particles that contributed to more than 90% of the film weight. Each coating was evaluated at 10 and 20 bilayers (BL). All coated fabrics retained their weave structure after being exposed to a vertical flame test, while uncoated cotton was completely destroyed. Micro combustion calorimetry confirmed that coated fabrics exhibited a reduced peak heat release rate, by as much as 20% relative to the uncoated control. The 10 BL PEI-8 nm silica recipe was the most effective because the coating is relatively thick and uniform relative to the other systems. Soaking cotton in basic water (pH 10) prior to deposition resulted in better assembly adhesion and flame-retardant behavior. These results demonstrate that LbL assembly is a useful technique for imparting flame retardant properties through conformal coating of complex substrates like cotton fabric.  相似文献   

15.
Controllable exploding polyelectrolyte microcapsules were developed by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on a dextran microgel core containing a cleavable disulfide bond fabricated via click chemistry. The microcapsules can explode upon the injection of DTT with an explosive release of the drug.  相似文献   

16.
The layer-by-layer (LbL) assembly process of creating highly structured thin films derived from layers of polyelectrolytes and nanoparticles was adopted in this study to modify the surface of lignocellulosic fibers. Aqueous dispersions of clay nanoplatelets were created with ultrasonication and characterized with dynamic light scattering and atomic force microscopy in which confirmed the presence of individual clay nanoplatelets. Film thickness of never-dried clay and poly(diallyldimethylammonium chloride) (PDDA) multilayers was studied with a quartz crystal microbalance with dissipation monitoring (QCM-D). Using identical LbL deposition parameters, a slurry of steam-exploded wood fibers was modified by alternate adsorption of PDDA and clay with multiple rinsing steps after each adsorption cycle. Zeta potential measurements were used to characterize the fiber surface charges after each adsorption step while SEM images revealed that the LbL film masked the cellulose microfibril structure. Using a thermogravimetric analyzer, LbL modified steam-exploded wood fibers were observed to attain increased thermal stability relative to the unmodified material tested in both air and nitrogen atmospheres. Significant char for the LbL clay coated steam-exploded wood suggests the multilayer film serves as a barrier creating an insulating layer to prevent further decomposition of the material. This nanotechnology may have a positive impact on the processing of lignocellulosic fibers in thermoplastic matrices, designing of paper-based overlays for building products, and modification of cellulosic fibers for textiles.  相似文献   

17.
Layer-by-layer (LbL) thin film assembly occurs via the alternate adsorption of positively and negatively charged macromolecular species. We investigate here the control of LbL film growth through the electric potential of the underlying substrate. We employ optical waveguide lightmode spectroscopy (OWLS) to obtain in situ kinetic measurements of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) and poly(L-lysine)/dextran sulfate (PLL/DXS) multilayer film formation in the presence of an applied voltage difference (deltaV) between the adsorbing substrate, an indium tin oxide- (ITO-) coated waveguiding sensor chip, and a parallel platinum counterelectrode. We find initial layer adsorption to be significantly enhanced by an applied potential for both polyelectrolyte systems: the mass and thickness of (positively charged) PAH and PLL layers on ITO are about 60% and 500% larger, respectively, at deltaV = 2 V than at open circuit potential (OCP), in apparent violation of electrostatics. A kinetic analysis reveals the initial attachment rate constant to decrease with voltage, in agreement with electrostatics. To reconcile these results, we propose a more coiled and loosely bound adsorbed polymer conformation at higher applied potential. Following 10 adsorption steps, the mass and thickness of a PAH/PSS film grown under deltaV = 2 V are about 15% less than those of a comparable film grown under OCP, reflecting a lower degree of complexation between adsorbing polyanions and more highly coiled adsorbed polycations. Following 14 adsorption steps, the mass and thickness of a PLL/DXS film grown under deltaV = 2 V are about 70% greater than those of a comparable film grown under OCP, reflecting the increased charge overcompensation in the initial layer. We find the scaling of film mass () with the number of adsorption steps (n) to be linear in the PAH/PSS system and exponential (i.e., approximately eyn) in the PLL/DXS system, irrespective of applied voltage. We observe to decrease with applied voltage and to exhibit a crossover to a smaller value around n = 5. Extrapolation reveals PLL/DXS multilayer films to be suppressed by increased voltage in the limit of large n: the mass of films grown at OCP and deltaV = 1 V would surpass that of a film grown under deltaV = 2 V at about the 23rd and 18th adsorption steps, respectively. The formation kinetics of PLL/DXS, but not PAH/PSS, change qualitatively under voltage: PLL adsorption is slow to reach a plateau, possibly due to the formation of secondary structure, and a decrease in film mass occurs toward the end of each DXS adsorption step, suggesting spontaneous removal of some PLL/DXS complexes from the film.  相似文献   

18.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

19.
Acrylamide (AM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS-H+) or its sodium salt (AMPS-Na+) were copolymerised by free-radical crosslinking polymerization to obtain poly(AM-co-AMPS-H+) and poly(AM-co-AMPS-Na+) superabsorbent polymers (SAPs). A maximum water absorbency in deionised water of 1200 g g−1 was achieved for poly(AM-co-AMPS-Na+) at a 85% mol of AMPS-Na+. The inclusion of mica at 5-30% (w w−1) into the preparation of poly(AM-co-AMPS-Na+) SAP leads to an intercalated structure, as detected by XRD and TEM analyses. Poly(AM-co-AMPS-Na+)/30% (w w−1) mica SAP nanocomposite showed a tap water absorbency of 593 g g−1 with a better thermal stability, compared to the pure SAP. Cone calorimetric analyses revealed that the wood specimens coated with the prepared poly(AM-co-AMPS-Na+) SAP or its 30% (w w−1) mica nanocomposite provided excellent protection in delaying the ignition time after exposure to an open flame when compared to that observed with the uncoated specimen. The maximum reduction in the peak heat release rate and the greatest extension of time at peak heat release rate were observed with the nanocomposite-coated surface, but the total heat release rate was increased. The delayed burning mechanism is brought by the intercalating structure of mica in the SAP nanocomposites, which provided a better shielding effect against external heat sources, and the capability of the SAP nanocomposite in holding a large amount of water.  相似文献   

20.
An electric field enhanced method is developed for fabricating layer-by-layer (LbL) self-assembly polyelectrolyte multilayer membranes. Three kinds of electric field enhanced polyelectrolyte multilayer membranes (EPEMs), poly(diallyl dimethylammonium chloride)/poly(styrenesulfonate sodium salt) (PDDA/PSS), poly(diallyldimethylammonium chloride)/poly(acrylic acid sodium salt) (PDDA/PAA) and polyethylenimine/poly(acrylic acid sodium salt) (PEI/PAA), were self-assembled on a reverse osmosis membrane (ROM). The pervaporation performances of EPEMs for separating isopropanol–water mixtures (90/10, w/w) are all superior to those of corresponding normal self-assembled polyelectrolytes membranes (PEMs), and the selectivity increases with PDDA/PSS, PDDA/PAA and PEI/PAA in order. For (PEI/PAA)4PEI EPEM, the separation factor is 1075 and permeation flux is 4.05 kg m−2 h−1 at 70 °C. This novel method speeds up the LbL process, which makes it promising for the practical application of the LbL multilayer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号