首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用密度泛函理论中的B3LYP方法, 采用LanL2DZ基组, 对Mo2(form)4和[Mo2(form)4]+{其中(form)-=[(p-tol)NCHN(p-tol)]-)}, 进行了分子轨道计算, 明确了Mo—Mo键具有σ2π4δ2四重键的性质. 计算得到Mo—Mo间的分子轨道顺序为π<σ<δ<σ*<δ*<π*. 用单激发组态相互作用(CIS)方法计算了Mo2(form)4和[Mo2(form)4]+的电子吸收光谱, Mo2(form)4的最低能吸收光谱λ=390 nm, 是1A1g→1Eg跃迁产生的, 属于金属内部的电荷迁移. [Mo2(form)4]+的最低能吸收光谱λ=1 096 nm, 也是1Ag→1Eg跃迁产生的, 属于金属内部的电荷迁移.  相似文献   

2.
双核浆叶式钨配合物电子结构和电子光谱的理论研究   总被引:1,自引:1,他引:0  
用密度函数理论中的B3LYP方法,对甲脒做配体的过渡金属双核浆叶式配合物W2(form)4((form)^-=[(p-tol)NCHN([p-tol)^-]^-)进行了分子轨道计算,结果表明,W-W键具σ^2π^4δ^2四重键的性质,W-W间的成键和反键分子轨道顺序为σ<π<δ<σ^*<π^*<δ^*。用单激发组态相互作用(CIS)方法计算了W2(form)4的电子吸收光谱,得到这种配合物的最低能吸收光谱为λ=496nm,这是δ(dxy)→σ^*(spz)跃迁产生的,属于金属内部的电荷迁移。  相似文献   

3.
联吡啶Ir(Ⅲ)配合物电子结构及光谱性质的理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)对配合物Ir(ppy)2(N^N)+ [ppy=2-phenylpyrine, N^N=bpy= 2,2’-bipyridine(1); N^N=H2dcbpy=4.4’-dicarboxy-2,2’-bipyridine(2), N^N=Hcmbpy=4-carboxy-4’-methyl-2,2’-bipyridine(3)] 的基态和激发态几何构型进行优化, 通过TDDFT/B3LYP方法得到这些化合物在乙腈溶液中的吸收光谱和磷光发射光谱及其跃迁性质. 研究结果表明, 化合物1 (384 nm), 2(433 nm)和3 (413 nm) 最低的吸收谱被指认为MLCT/LLCT[dIr+π(ppy)→π*(N^N)]电荷跃迁. 化合物1(486 nm), 2(576 nm)和3 (567 nm)最低的磷光发射可以描述为[dIr+π(ppy)]→[π*(N^N)]跃迁. 这是由于联吡啶配体上吸电子基团的引入, 稳定了相应的空轨道, 导致了化合物2和3的吸收和发射光谱红移. 同时, 化合物非线性光学性质的计算结果表明, 三种化合物均具有较大的一阶超极化率(β), 联吡啶配体中吸电子基团的增加, 使得分子内电子转移增强, 导致一阶超极化率增大.  相似文献   

4.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸;L=O^O(1),O^N(2),N^N(3),其中O^O为六氟乙酰丙酮,O^N为羟基喹啉,N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构.利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱.研究结果表明,优化得到的几何结构参数和相应的实验值符合得非常好,激发态几何构型相对基态变化较小,这与实验上观察到的较小的斯托克斯频移现象一致.配合物1-3的最低能吸收分别在342、431和329nm,其磷光发射分别在521、638和488nm.配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征,所以它们的最低能吸收归属于π-π*电荷跃迁,并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰,且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁.此外,它们的磷光发射和吸收有相似的跃迁特征.  相似文献   

5.
应用MP2和CIS方法分别优化了IrR(CO)(PH3)2(mnt) [mnt=maleonitriledithiolate; R=H (1), CH3 (2), Br (3)]系列配合物的基态和激发态几何结构. 使用TD-DFT方法计算了配合物的吸收和发射光谱. 计算结果表明: 配合物1~3在430, 435及439 nm处的最低能吸收均为ILCT/LLCT/MLCT混合跃迁性质, 它们的最低能磷光发射和吸收性质相似, 发射波长则红移至760, 770和800 nm. 配合物2与 1的几何结构、光谱性质都很接近, 而配合物3中, 由于溴的引入使其基态和激发态几何构型及前线分子轨道成分与1和2有很大不同, 进而对其光谱及跃迁性质产生了影响.  相似文献   

6.
通过由2,2,6,6-四甲基哌啶-氮-氧化物(TEMPO)自由基修饰的三联吡啶配体与二价金属铂盐反应,合成得到一种新型的金属配合物,[Pt(terpy-TEMPO)Cl]Cl?H_2O?CH_3OH(terpy指2,2′:6′,2′′-三联吡啶)。此配合物由于TEMPO自由基的作用呈现高效率的光猝灭现象。X衍射单晶数据证实此配合物的分子结构信息。利用紫外、荧光及电子顺磁共振光谱等谱学手段探讨了该配合物的紫外吸收、发射及电子顺磁共振(EPR)光谱性质。[Pt(terpy-TEMPO)Cl]Cl?H_2O?CH_3OH的室温紫外吸收光谱表明,此配合物有两个典型的紫外吸收波段,强吸收段和次强吸收段,分别来源于配体到配体的跃迁(MLCT),金属到配体的跃迁(LLCT)。另外,[Pt(terpy-TEMPO)Cl]Cl?H_2O?CH_3OH的室温固体荧光光谱表明,TEMPO的单电子能有效地猝灭三联吡啶铂的荧光发射。我们对此猝灭机理进行了详细合理的阐述,并通过高斯09软件包对配合物的能隙和能带进行了量化计算,结果进一步证明配合物体系中的TEMPO单电子能极大的影响最高占有分子轨道(HOMO)与最低未占分子轨道(LUMO)之间的能级差,从理论上解释了三联吡啶铂配合物的光猝灭的光学性质与分子结构之间的关系。EPR结果表明,稳定自由基上接上金属配合物,不影响自由基A值和g值(A值指自由基超精细耦合常数,g值指自由基的g因子),但影响自由基转动、弛豫时间。  相似文献   

7.
采用密度泛函与依时密度泛函理论(Density Functional Theory and Time-dependent Density Functional Theory, DFT/TDDFT)对铂二硫氰(2,2’)二联吡啶三种异构体[Pt(SCN)2(bpy)],[Pt(SCN)(NCS)(bpy)]和[Pt(NCS)2(bpy)]的分子与电子结构,吸收与发射光谱进行了理论研究。研究不同异构体对此类化合物吸收与发射性质的影响。  相似文献   

8.
采用密度泛函理论(DFT)研究了氧吸附后Pt/Cu(001)表面合金的原子结构和表面性质.计算结果表明,在Pt/Cu(001)-p(2&#215;2)-O表面最稳定结构中,衬底表面原子层不发生再构,氧原子吸附于4重对称的Pt原子谷位,每个氧原子吸附能约为2.303 eV.吸附结构的Cu—O和Pt—O键键长分别为0.202和0.298 nm,氧原子的吸附高度ZCu—O约为0.092 nm.吸附前后Pt/Cu(001)-1ML(monolayer)表面合金的表面功函数分别为4.678和5.355 eV.吸附表面氧原子和衬底的结合主要来自氧原子2p轨道和衬底金属原子d轨道的杂化作用,氧原子吸附形成的表面电子态主要位于费米能级以下约-2.7 eV处.  相似文献   

9.
以2,3-二苯基吡嗪(H_2dpp)、5-甲基-2,3-二苯基吡嗪(H2mdpp)和2,3-二苯基喹喔啉(H_2dpq)为配体,乙酰丙酮(Hacac)为辅助配体,合成了一类单核和双核金属铂配合物[Pt(Hdpp)(acac)](1)、[Pt2(dpp)(acac)2](2)、[Pt(Hmdpp)(acac)](3)和[Pt(Hdpq)(acac)](4),并且得到了配合物2、3和4的晶体结构数据。通过对单核配合物1的类似物配合物3和双核配合物2的配位平面、分子扭曲程度等的晶体结构分析,我们合理地推断以2,3-二苯基吡嗪为配体的双核配合物2具有比相应的单核配合物1更加扭曲的分子平面。通过对配合物1和2的紫外-可见吸收光谱和激发光谱的比较,发现由于双核配合物2在激发态的构型变化造成了激发光谱中最低能带比相应的最低能量吸收带光谱红移了18 nm。因此,尽管双核配合物2具有与单核配合物1类似的紫外-可见吸收光谱,最低能吸收带仅比单核配合物1红移5 nm,但是双核配合物2的最大发射峰值λmax为609 nm,比单核配合物1(λmax=546 nm)红移了63 nm。双核配合物2的发射光谱红移现象与配合物的分子构型直接相关。分子扭曲程度更大的双核配合物2在激发态可能发生了一个向平面性更好的构型转变过程,从而进一步降低了激发态能量,造成了发射光谱的红移。  相似文献   

10.
合成了一种含4,5-二氮-9,9-螺二芴(sb)配体的三齿磷铱配合物Ir(tpit)(sb)Cl(tpitH_2=亚磷酸三苯基酯),通过核磁共振氢谱和磷谱及高分辨质谱对其结构进行了确定。X射线单晶衍射分析表明,sb配体的存在扭曲了分子结构,有助于降低分子聚集及发光淬灭。与存在分子内π-π堆积的模型配合物Ir(tpit)(bpy)Cl(bpy=2,2′-联吡啶)对比进行了光电性能的研究。结果表明在聚甲基丙烯酸甲酯(质量分数1%)中配合物Ir(tpit)(sb)Cl的发光波长为512 nm,相对配合物Ir(tpit)(bpy)Cl的波长(520 nm)有了8 nm蓝移。配合物Ir(tpit)(sb)Cl的发光量子效率为30%,与配合物Ir(tpit)(bpy)Cl的94%相比有明显降低,说明了分子内π-π堆积作用在降低柔性基团非辐射跃迁率方面的重要作用。基于配合物Ir(tpit)(sb)Cl的有机电致发光器件,最大电流效率和外量子效率分别为14 cd·A~(-1)和4.5%。而由于分子内π-π堆积作用,基于配合物Ir(tpit)(bpy)Cl器件的最大电流效率和外量子效率分别高达60 cd·A~(-1)和18.2%。  相似文献   

11.
Polymer-induced heteronucleation was utilized for the selective crystallization of the color polymorphic platinum complexes Pt(bpy)Cl2 and Pt(phen)Cl2. Crystal structures of two polymorphs of Pt(phen)Cl2 were determined and reveal that, as in the case of Pt(bpy)Cl2, this compound has one form with Pt...Pt interactions (orange crystals) and another lacking these contacts (yellow crystals). Free energy measurements reveal that the polymorphs of Pt(bpy)Cl2 and Pt(phen)Cl2 without Pt...Pt interactions are more stable in both cases by 0.67(2) and 0.53(1) kJ/mol, respectively, and this finding is consistent with the principle of close packing. Furthermore, a search of the Cambridge Structural Database reveals that, for polymorphic platinum complexes, shorter intermolecular Pt...Pt interactions generally result in less dense structures.  相似文献   

12.
A series of catechols with attached imide functionality (imide = phthalimide PHT, 1,8-naphthalimide NAP, 1,4,5,8-naphthalenediimide NDI, and NAP-NDI) has been synthesized and coordinated to the Pt (II)(bpy*) moiety, yielding Pt(bpy*)(cat-imide) complexes (bpy* = 4,4'-di- tert-butyl-2,2'-bipyridine). X-ray crystal structures of PHT and NAP complexes show a distorted square-planar arrangement of ligands around the Pt center. Both complexes form "head-to-tail" dimers in the solid state through remarkably short unsupported Pt...Pt contacts of 3.208 (PHT) and 3.378 A (NAP). The Pt(bpy*)(cat-imide) complexes are shown to combine optical (absorption) and electrochemical properties of the catecholate (electron-donor) and imide (electron-acceptor) groups. The complexes show a series of reversible reduction processes in the range from -0.5 to -1.9 V vs Fc (+)/Fc, which are centered on either bpy* or imide groups, and a reversible oxidation process at +0.07 to +0.14 V, which is centered on the catecholate moiety. A combination of UV-vis absorption spectroscopy, cyclic voltammetry, UV-vis spectroelectrochemistry, and EPR spectroscopy has allowed assignment of the nature of frontier orbitals in Pt(bpy*)(cat-imide) complexes. The HOMO in Pt(bpy*)(cat-imide) is centered on the catechol ligand, while the LUMO is localized either on bpy* or on the imide group, depending on the nature of the imide group involved. Despite the variations in the nature of the LUMO, the lowest-detectable electronic transition in all Pt(bpy*)(cat-imide) complexes has predominantly ligand-to-ligand (catechol-to-diimine) charge-transfer nature (LLCT) and involves a bpy*-based unoccupied molecular orbital in all cases. The LLCT transition in all Pt(bpy*)(cat-imide) complexes appears at 530 nm in CH2Cl2 and is strongly negatively solvatochromic. The energy of this transition is remarkably insensitive to the imide group present, indicating lack of electronic communication between the imide and the catechol moieties within the cat-imide ligand. The high extinction coefficient, approximately 6 x 10(3) L mol(-1) cm(-1) of this predominantly LLCT transition is the result of the Pt orbital contribution, as revealed by EPR spectroscopy of the complexes in various redox states. The CV profile of the oxidation process of Pt(bpy*)(cat-imide) in CH2Cl2 and DMF is concentration dependent, as was shown for NDI and PHT complexes as typical examples. Oxidation appears as a simple diffusion-limited process at low concentrations, with an increasing anodic-to-cathodic peak separation eventually resolving as two independent consecutive waves as the concentration of the complex increases. It is suggested that aggregation of the complexes in the diffusion layer in the course of oxidation is responsible for the observed concentration dependence. Overall, the Pt(bpy*)(cat-imide) complexes are electrochromic compounds in which a series of stepwise reversible redox processes in the potential range from 0.2 to -2 V (vs Fc (+)/Fc) leads to tuneable absorbencies between 300 and 850 nm.  相似文献   

13.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

14.
Under 254 nm irradiation, [Pt(bpy)Cl2] is converted to [Pt(bpy)Cl4] in a solvent-initiated process. The reaction is very nearly zero order throughout. The rate decreases slightly with increasing starting concentration. These characteristics can be rationalized by a rate law of the form afs, where fs is the fraction of light absorbed by chloroform. The species that reacts with [Pt(bpy)Cl2] is believed to be CCl3OO.  相似文献   

15.
A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure.  相似文献   

16.
A 1:1 thioredoxin-Pt(bpy) complex was prepared by adding [Pt(bpy)(en)]Cl(2)(bpy = 2,2'-bipyridine, en = ethylenediamine) to Thermus thermophilus HB8 thioredoxin in pH 8 phosphate buffer. Matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) and UV spectra of indicate the formation of Pt(bpy)(cys-Ala-Pro-cys-containing peptide fragment). These findings suggest that the Pt(bpy)(2+) unit binds to the active site of thioredoxin. The thioredoxin-platinum complex has no catalytic activity for the reduction of glutathione disulfide in the presence of NADPH and thioredoxin reductase, so that the platinum complex functions as an inhibitor.  相似文献   

17.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

18.
The Pt(II) amido and phenoxide complexes ((t)bpy)Pt(Me)(X), ((t)bpy)Pt(X)(2), and [((t)bpy)Pt(X)(py)][BAr'(4)] (X = NHPh, OPh; py = pyridine) have been synthesized and characterized. To test the feasibility of accessing Pt(IV) complexes by oxidizing their Pt(II) precursors, the previously reported ((t)bpy)Pt(R)(2) (R = Me and Ph) systems were oxidized with I(2) to yield ((t)bpy)Pt(R)(2)(I)(2). The analogous reaction with ((t)bpy)Pt(Me)(NHPh) and MeI yields the corresponding ((t)bpy)Pt(Me)(2)(NHPh)(I) complex. Reaction of ((t)bpy)Pt(Me)(NHPh) and phenylacetylene at 80 °C results in the formation of the Pt(II) phenylacetylide complex ((t)bpy)Pt(Me)(C≡CPh). Kinetic studies indicate that the reaction of ((t)bpy)Pt(Me)(NHPh) and phenylacetylene occurs via a pathway that involves [((t)bpy)Pt(Me)(NH(2)Ph)][TFA] as a catalyst. The reaction of H(2) with ((t)bpy)Pt(Me)(NHPh) ultimately produces aniline, methane, (t)bpy, and elemental Pt. For this reaction, mechanistic studies reveal that 1,2-addition of dihydrogen across the Pt-NHPh bond to initially produce ((t)bpy)Pt(Me)(H) and free aniline is catalyzed by elemental Pt. Heating the cationic complexes [((t)bpy)Pt(NHPh)(py)][BAr'(4)] and [((t)bpy)Pt(OPh)(py)][BAr'(4)] in C(6)D(6) does not result in the production of aniline and phenol, respectively. Attempted synthesis of a cationic system analogous to [((t)bpy)Pt(NHPh)(py)][BAr'(4)] with ligands that are more labile than pyridine (e.g., NC(5)F(5)) results in the formation of the dimer [((t)bpy)Pt(μ-NHPh)](2)[BAr'(4)](2). Solid-state X-ray diffraction studies of the complexes ((t)bpy)Pt(Me)(NHPh), [((t)bpy)Pt(NH(2)Ph)(2)][OTf](2), ((t)bpy)Pt(NHPh)(2), ((t)bpy)Pt(OPh)(2), ((t)bpy)Pt(Me)(2)(I)(2), and ((t)bpy)Pt(Ph)(2)(I)(2) are reported.  相似文献   

19.
Kishi S  Kato M 《Inorganic chemistry》2003,42(26):8728-8734
Three linkage isomers, bis(thiocyanato-S)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(2)(bpy)]), (thiocyanato-S)(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(SCN)(NCS)(bpy)]), and bis(thiocyanato-N)(2,2'-bipyridine)platinum(II) ([Pt(NCS)(2)(bpy)]) were isolated, and their structures were elucidated. The crystal data are as follows: for [Pt(SCN)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, P2(1)2(1)2(1) (No. 19), a = 12.929(9) A, b = 18.67(1) A, c = 5.497(4) A, Z = 4; for [Pt(SCN)(NCS)(bpy)], C(12)H(8)N(4)S(2)Pt, monoclinic, P2(1)/n (No. 14), a = 10.909(7) A, b = 7.622(4) A, c = 16.02(1) A, beta = 102.323(7) degrees, Z = 4; for [Pt(NCS)(2)(bpy)], C(12)H(8)N(4)S(2)Pt, orthorhombic, Pbcm (No. 57), a = 10.3233(8) A, b = 19.973(2) A, c = 6.4540(5) A, Z = 4. The stacking structures of the isomers were found to be different depending on the coordination geometries based on the N- and S-coordination of the thiocyanato ligands, which control the color and luminescence of the crystals sensitively. The isomerization behaviors of the complex have been investigated both in solution and in the solid state. In solution, stepwise thermal isomerization from [Pt(SCN)(2)(bpy)] to [Pt(NCS)(2)(bpy)] by way of [Pt(SCN)(NCS)(bpy)] was observed using (1)H NMR spectroscopy. Reverse isomerization, from [Pt(NCS)(2)(bpy)] to [Pt(SCN)(NCS)(bpy)] and [Pt(SCN)(2)(bpy)], occurred when irradiated with near ultraviolet (UV) light. In contrast, the [Pt(SCN)(2)(bpy)] yellow crystals exhibited thermal isomerization directly to red crystals of [Pt(NCS)(2)(bpy)], as detected by changes in the emission spectrum, which indicates that the flip of two SCN(-) ligands correlatively occurred in the solid state. The yellow crystals of [Pt(SCN)(NCS)(bpy)] were also converted to the thermodynamically stable red crystal of [Pt(NCS)(2)(bpy)] though the reverse isomerization has never been observed to occur by photoirradiation in the solid state.  相似文献   

20.
From the reaction mixture of [M(II)(bpy)Cl(2)], the ligand 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and 2 equiv of a base (NaOCH(3)) in CH(3)CN under anaerobic conditions were obtained the blue-green neutral complexes [M(II)(L(AP)-H)(bpy)] (M = Pd (1), Pt (2)). (L(AP)-H)(2)(-) represents the o-amidophenolato dianion, (L(AP))(1)(-) is the o-aminophenolate(1-), (L(ISQ))(1)(-) is its one-electron-oxidized, pi-radical o-iminobenzosemiquinonate(1-), and (L(IBQ))(0) is the neutral quinone. Complexes 1 and 2 can be oxidized by ferrocenium hexafluorophosphate, yielding the paramagnetic salts [M(II)(L(ISQ))(bpy)]PF(6) (S = (1)/(2)) (M = Pd (1a), Pt (2a)). The reaction of PtCl(2), 2 equiv of H[L(AP)], and 4 equiv of base in CH(3)CN in the presence of air yields diamagnetic [Pt(L(ISQ))(2)] (3), which is shown to possess an electronic structure that is best described as a singlet diradical. Complexes 1, 1a, 2, 2a, and 3 have been structurally characterized by X-ray crystallography at 100 K. It is clearly established that O,N-coordinated (L(AP)-H)(2)(-) ligands have a distinctly different structure than the corresponding O,N-coordinated (L(ISQ))(1)(-) radicals. It is therefore possible to unambiguously assign the protonation and oxidation level of o-aminophenol derived ligands in coordination compounds. All complexes have been investigated by cyclic voltammetry, spectroelectrochemistry, EPR, and UV-vis spectroscopy. Complexes 1 and 2 can be reversibly oxidized to the [M(II)(L(ISQ))(bpy)](+) and [M(II)(L(IBQ))(pby)](2+) mono- and dications, respectively, and reduced to the [M(L(AP)-H)(bpy(*))](-) anion, where (bpy(*))(1)(-) is the radical anion of 2,2'-bipyridine. Complex 3 exhibits four reversible one-electron-transfer waves (two oxidations and two reductions) which are all shown to be ligand centered. The EPR spectra of the one-electron-reduced species [Pt(L(AP)-H)(L(ISQ))](-) (S = (1)/(2)) and of the one-electron-oxidized species [Pt(L(ISQ))(L(IBQ))](+) (S = (1)/(2)) in CH(2)Cl(2) solutions have been recorded. To gain a better understanding of the electronic structure of 3 and its monooxidized and reduced forms, relativistic DFT calculations have been carried out. Magnetic coupling parameters and hyperfine couplings were calculated and found to be in very good agreement with experiment. It is shown that both the one-electron oxidation and reduction of 3 are ligand centered. A simple MO model is developed in order to understand the EPR properties of the monocation and monoanion of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号