首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
准自由支撑铝薄膜中有序表面结构的自组织生长   总被引:1,自引:0,他引:1       下载免费PDF全文
张永炬  余森江 《物理学报》2005,54(10):4867-4873
利用真空热蒸发方法在液体基底表面成功制备出具有自由支撑边界条件的金属铝薄膜系统,研究了薄膜中自发形成的自边界向内部区域逐渐生长而呈带状分布的有序表面结构.该有序结构的形成与薄膜厚度、沉积速率和真空环境中的生长时间等实验参数密切相关,其形成过程可用一个三阶段生长模型来描述.实验证明此类有序结构是在薄膜内应力作用下,铝原子及原子团簇在液体表面自由扩散凝聚所致.进一步的理论研究表明:基于特征的边界条件和固液相互作用,该自由支撑铝薄膜系统中包含了丰富的正弦形内应力分布,各种具有不同振幅和频率的正弦形内应力的合成可形成矩形状畴块和带状有序结构. 关键词: 液体基底 铝薄膜 自组织生长 有序结构  相似文献   

2.
液体基底表面金薄膜中的有序结构和自组装现象   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了沉积在液体基底(硅油)表面金薄膜中的带状有序结构和自组装现象.实验结果表明:在一定条件下,生长在硅油表面的金薄膜中可形成一种特征的有序结构,它是由近似矩形状的畴块拼接而成的;相邻畴块的长度近似相等,但宽度一般不同,因而具有特征长度为101—102μm数量级的准周期结构.进一步的实验发现:此类带状有序结构是由薄膜中特征内应力所引起的物质相互挤压而形成的.另外,对此类具有近似自由支撑边界条件的薄膜中的内应力形成机理进行了研究. 关键词: 薄膜 有序结构 内应力 自组装  相似文献   

3.
In order to characterize the disordered O/Cu surfactant layer causing layer-by-layer growth of Cu on O-precovered Ru(0001), an ordered O/Cu structure is used as substrate to study further Cu growth. The O/Cu structure develops during Cu deposition on O-saturated Ru(0001) at growth temperatures of ca 520 K. It was recently interpreted as being composed of separated wave-like O–Cu–O chains forming a disrupted ‘Cu2O’ surface layer. Scanning tunneling microscopy (STM) is used to characterize domains and defects of the O/Cu structure and the morphology of the Cu film growing on-top. For temperatures ca 400 K, again an O-mediated layer-by-layer growth of Cu is observed. The post-deposited Cu films display a similar island shape and island density as found for the Cu film growth on O-saturated Ru(0001) where a disordered O/Cu surfactant layer is present. Initially, domains of the ordered O/Cu structure are revealed on-top of the growing Cu film which are rotated by 120° to each other and separated by boundaries where the ordering is disturbed. The domain size drastically decreases with film thickness. As a result, the ordering of the O/Cu top-layer is extinguished already after the deposition of a few Cu monolayers. Finally, the surface displays the same disordered corrugation pattern as the O/Cu surfactant layer. The STM investigations indicate a strong correlation between the O/Cu structure and the disordered O/Cu surfactant layer. This leads to the conclusion that the O/Cu surfactant layer is composed of a random-like arrangement of O–Cu–O strings which locally form disrupted ‘Cu2O’ fragments.  相似文献   

4.
利用直流溅射方法在液体基底(硅油)表面成功制备出金属铁薄膜系统,研究了其生长机理及特征的表面有序结构.实验发现铁薄膜的生长过程与液相基底表面非磁性金属薄膜的情况类似,基本服从二阶段生长模型.连续铁薄膜中可观测到尺寸巨大的圆盘形有序结构,其生长演化与溅射功率、沉积时间和真空环境中的生长时间等实验条件密切相关.实验证明,此类有序结构是在薄膜内应力作用下,铁原子及原子团簇在液体表面自由扩散迁移,并最终在硅油基底表面某些区域成核凝聚所致.在较大溅射功率和沉积时间条件下,圆盘外部区域的铁薄膜中形成周期分布的波纹褶皱,其波长约为10 μm,波峰基本与圆盘的边界平行.进一步研究表明:在沉积过程中,由于沉积铁原子的局域能量作用,导致硅油的表面层结构发生改变而形成一聚合物层;在随后的冷却过程中,聚合物层的强烈收缩使铁薄膜处于很大的压应力场中,促使薄膜起皱形成波纹结构. 关键词: 液体基底 铁薄膜 生长机理 有序结构  相似文献   

5.
An unusual form of ordered stress relief patterns is observed in a nearly free sustained aluminum film system deposited on liquid substrates by the therm~l evaporation method. The edge effects on the growth of the ordered patterns are systematically studied. It is found that the patterns initiate from the film edges, preexisting ordered patterns, or other imperfections of the film. When the patterns extend in the film regions, they decay gradually and finally disappear. If they develop along the boundaries, however, the sizes are almost unchanged over several millimeters. The stress relief patterns look like rectangular waves in appearance, which are proven to evolve from sinusoidal to triangular waves gradually. The morphological evolution can be well explained by the general theory of buckling of plates.  相似文献   

6.
The structure of thin Al films grown on Si(1 1 1) with thin Cu buffer layers has been investigated using synchrotron radiation photoemission spectroscopy. A thin Cu(1 1 1) layer between the Si(1 1 1) substrate and an Al film may enhance quantum well effects in the Al film significantly. The strength of quantum well effects has been investigated qualitatively with respect to the thickness of the Cu buffer layer and to the Al film thickness. Deposition of Cu on Si(1 1 1)7 × 7 leads to formation of a disordered silicide layer in an initial regime before a well-ordered Cu(1 1 1) film is formed after deposition of the equivalent of 6 layers of Cu. In the regime below 6 layers of Cu the disorder is transferred to Al layers subsequently grown on top. The initial growth of up to 8 layers of Al on a well-ordered Si/Cu(1 1 1) layer leads to a disordered film due to the lattice mismatch between the two metals. When the Cu buffer layer and the Al over-layer are above 6 and 8 layers, respectively the Al film shows sharp low energy electron diffraction patterns and very sharp quantum well peaks in the valence band spectra signalling good epitaxial growth.  相似文献   

7.
The deposition of silver on an ordered alumina film prepared on Re(0001) surface has been studied by Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and high resolution electron energy loss spectroscopy (HREELS). The results show that Ag grows initially as clusters at 90K and 300K. A red shift of the Ag surface plasmon as a function of decreasing coverage is observed, which is related to the cluster size effect. A surface plasmon characteristic of metallic Ag appears at coverages higher than 2.8 monolayer equivalent.  相似文献   

8.
Using complementary techniques, namely X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS), we present a comparative study of the bulk and surface composition in device grade CuGaSe2 (CGSe) thin films. The films were deposited in two stages by an open-tube chemical vapor deposition (CVD) process. The first stage leads to a nearly stoichiometric polycrystalline CGSe film of approximately 1.5 μm thickness. During the second stage the film is annealed in a Ga- and Se-rich atmosphere. While the XRF-data show a nearly stoichiometric integrated film composition, the surface composition, as determined by XPS analysis, is Cu-poor, pointing towards a highly non-stoichiometric surface layer. In addition, sodium was found at the film surfaces. The data are discussed in the framework of an ordered defect compound formation and the formation of a (Cu,Na)–Ga–Se compound at the surface of the CuGaSe2 films. Complementary ultraviolet photoelectron- and inverse photoelectron spectroscopy investigations of the film surface derive a widening of the surface energy band gap up to 2.2 eV in comparison with a bulk energy band gap around 1.65 eV (obtained by optical transmission analysis). The observed data are consistent with our model of a two layer film structure containing a defect-rich near-surface region and a defect-poor bulk.  相似文献   

9.
用共蒸发法沉积了ZnTe/ZnTe:Cu复合多晶薄膜,通过XRD,XPS,C-V,I-V等研究了沉积温度对薄膜结构、Cu浓度分布及电池性能的影响.结果表明,沉积温度对薄膜的结构影响不明显,薄膜呈立方相,经185 ℃退火后出现了六方相.对薄膜的剖析发现,Cu浓度分布呈现先上升到一极大值而后快速下降的趋势, 100 ℃沉积的ZnTe/ZnTe:Cu薄膜,ZnTe层起到了阻止Cu扩散作用,用这种薄膜制作的太阳电池XD较大 关键词: ZnTe多晶薄膜 沉积温度 薄膜结构 器件性能  相似文献   

10.
纳米Cu/Al2O3组装体模板合成与光吸收   总被引:5,自引:0,他引:5       下载免费PDF全文
以有序的多孔氧化铝为模板,利用交流电在孔洞中沉积金属铜得到纳米Cu粒子/Al2O3组装体系.透射电镜观察显示随着交流电沉积时间的延长,孔洞中纳米Cu粒子数量增加.测量了纳米Cu粒子/Al2O3组装体系的紫外可见光吸收光谱,发现随着孔洞中纳米Cu粒子数量增加,纳米Cu粒子/Al2O3组装体系的吸收带边大幅度红移;根据雷利散射引起的消光增强解释了组装体吸收带边红移的原因.同时发现 关键词: 纳米Cu 模板合成 光吸收  相似文献   

11.
Selective metal pattern formation and its EMI shielding efficiency   总被引:1,自引:0,他引:1  
A novel method for selective metal pattern formation by using an enhanced life-time of photoexcited electron-hole pairs in bilayer thin film of amorphous titanium dioxide and hole-scavenger-containing poly(vinyl alcohol) was proposed. By UV-irradiation through photomask on the bilayer film, the photodefined image of photoelectrons could be easily and simply produced, consequently resulting in selective palladium (Pd) catalyst deposition by reduction. The successive electrolessplating on Pd catalysts and electroplating on electrolessplated pattern were possible. Furthermore, the electromagnetic interference shielding efficiencies of the metal mesh patterns with various characteristic length scales of line width and thickness were investigated.  相似文献   

12.
Interfaces prepared by vapor deposition of Sn onto Pt(100) surfaces have been examined using the following techniques: Auger electron and X-ray photoelectron spectroscopy (AES and XPS), low-energy electron diffraction (LEED), and low-energy ion surface scattering (LEISS) with Ne+ ions. Tin deposition was conducted at 320 and 600 K, and the surface composition and order was examined as a function of further annealing to 1200 K. The AES uptake plots (signal versus deposition time) indicate that the Sn growth mode can be described by a layer-by-layer process only up to one adayer at 320 K. Some evidence of 3D growth is inferred from LEED and LEISS data for higher Sn coverages. For deposition at 600 K, AES data indicate significant interdiffusion and surface alloy formation. LEED observations (recorded at a substrate temperature of 320 K) show that the characteristic hexagonal Pt(100) reconstruction disappears with Sn exposures of 4.6 × 1014 atoms cm2Sn = 0.35 monolayer (ML)). Further Sn deposition results in a c(2 × 2) LEED pattern starting at a coverage of slightly above 0.5 ML. The c(2 × 2) LEED pattern becomes progressively more diffuse with increasing Sn exposure with eventual loss of all LEED features above 2.2 ML. Annealing experiments with various precoverages of Sn on Pt(100) are also described by AES, LEED, and LEISS results. For specific Sn precoverages and annealing conditions, c(2 × 2), p(3√2 × √2)R45°, and a combination of the two LEED patterns are observed. These ordered LEED patterns are suggested to arise from ordered PtSn surface alloys. In addition, the chemisorption of CO and O2 at the ordered annealed Sn/Pt(100) surfaces was also examined using thermal desorption mass spectroscopy (TDMS), AES, and LEED.  相似文献   

13.
A series of Co–Cu films with different Co:Cu ratio was electrodeposited at different electrolyte pH, deposition potential and film thickness, and their morphology, crystal structure and magnetic properties were investigated. Compositional analysis by energy dispersive x-ray spectroscopy disclosed that the Co and Cu content were 75 and 25 wt%, respectively, at high pH (3.2) level, while for films at low pH (2.5) level the compositions are 61 Co and 39 wt% Cu, and further decrease of Co:Cu ratio occurred as the film thicknesses increased. The surface morphology of the films changed from an initial dendritic stage to expanded dendrites with increasing Cu content by the electrolyte pH. The dendrites became more obvious at 3 μm and the dendritic structures increased with further increase of film thickness as the Co:Cu ratio decreased. Hence, the increase of the Cu content is thought to be the cause of the increase of dentritic structure. Structural characterizations by x-ray diffraction (XRD) showed that all films have face-centered cubic structure. In the XRD patterns, the peak intensity of Co (111) is lower for the films grown at low pH compared to that of high pH, and the (111) peaks of Co and Cu slightly separated at 3 μm and then the intensity of the Cu (111) increased with increasing film thickness from 4 to 5 μm, so that the Co:Cu ratio changed at all deposition parameters. Magnetic measurements displayed that the saturation magnetization decreased and the coercivity increased as the Co:Cu ratio decreased with all deposition parameters. Also, the magnetic easy axis was found to be in the film plane for all films. It was seen that the variations in the properties of the films might be attributed to the change of Co:Cu ratio caused by the deposition parameters.  相似文献   

14.
何静婧  刘玮  李志国  李博研  韩安军  李光旻  张超  张毅  孙云 《物理学报》2012,61(19):198801-198801
在柔性聚酰亚胺衬底上低温制备Cu(In,Ga)Se2薄膜太阳能电池, Na的掺入会改善电池特性, 但不同的掺Na工艺对Cu(In,Ga)Se2薄膜和器件特性的改善机理不同. 本实验通过对比前掺NaF和后掺NaF工艺发现, 在前掺Na工艺下, 由于Na始终存在于Cu(In,Ga)Se2薄膜生长过程中, Na存在于多晶 Cu(In,Ga)Se2 薄膜晶界处, 起到了扩散势垒的作用, 导致晶粒细碎、加剧两相分离, 同时减小了施主缺陷的形成概率; 而在后掺Na工艺下, 掺入的Na对薄膜的结构及生长不产生影响, 仅仅起到了钝化施主缺陷、改善薄膜缺陷态的作用. 同时, 研究表明, 后掺Na工艺中, NaF必须依靠外界能量辅助才能扩散进Cu(In,Ga)Se2内部, 实验结果证实, 只有衬底温度达到350 ℃以上时, 掺入的NaF才能较好地改善薄膜特性. 最终经掺Na工艺的优化, 得到低温工艺制备的柔性聚酰亚胺衬底器件效率达10.4%.  相似文献   

15.
We have employed low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy to follow the epitaxial growth of thin films of TiO2 on W(1 0 0). The films were grown both by metal vapour deposition of titanium onto the substrate in UHV with subsequent annealing in a low partial pressure of oxygen, and by metal vapour deposition in a low partial pressure of oxygen. LEED patterns showed the characteristic patterns of (1 1 0) oriented rutile. A systematic spot splitting was observed and attributed to a stepped surface. The calculated step height was found to be in good agreement with that expected for rutile TiO2(1 1 0), 3.3 Å. Titanium core level shifts were used to identify oxidation states as a function of film thickness allowing the interpretation in terms of a slightly sub-stoichiometric interface layer in contact with the substrate. In combination with the LEED patterns, the film structure is therefore determined to be (1 1 0) oriented rutile with a comparable level of stoichiometry to UHV prepared bulk crystals. The ordered step structure indicates considerable structural complexity of the surface.  相似文献   

16.
郇庆  胡昊  潘理达  肖江  杜世萱  高鸿钧 《中国物理 B》2010,19(8):80517-080517
<正>Deposition patterns of tetracyanoquinodimethane(TCNQ) molecules on different surfaces are investigated by atomic force microscopy.A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system,we investigate TCNQ thin film growth on both SiO_2 and mica surfaces.It is found that dense island patterns form at a high deposition rate,and a unique seahorse-like pattern forms at a low deposition rate.Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction.Finally,a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.  相似文献   

17.
This paper describes the structural and optical properties of Cu–Se thin films. The surface morphology of thin films was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Formation of Cu–Se thin films is concluded to proceed unevenly, in the form of islands which later grew into agglomerates. The structural characterization of Cu–Se thin film was investigated using X-ray diffraction pattern (XRD). The presence of two-phase system is observed. One is the solid solution of Cu in Se and the other is low-pressure modification of CuSe2. The Raman spectroscopy was used to identify and quantify the individual phases present in the Cu–Se films. Red shift and asymmetry of Raman mode characteristic for CuSe2 enable us to estimate nanocrystal dimension. In the analysis of the far-infrared reflection spectra, numerical model for calculating the reflectivity coefficient of layered system, which includes film with nanocrystalite inclusions (modeled by Maxwell-Garnett approximation) and substrate, has been applied.  相似文献   

18.
The macroscopic patterns were formed in alpha-methylferrocenemethanol films cast from organic solutions. The macroscopic pattern was composed of concentric rings in the solid film. The concentric rings consist of convex ridges and concave valleys; the ordered phase constitutes the convex ridges, while the concave valleys barely contain anything. It has been found that, as for the solvent which can form hydrogen bonding with the solute and has suitable evaporation rate, macroscopic pattern could be observed in the solid film; while as for the solvent that cannot form hydrogen bonding with the solute, no macroscopic pattern would appear. It was suggested that, intermolecular hydrogen bonding and aromatic π stacking interactions of the solute is responsible for the formation of the microscopic crystalline structure; while the hydrogen bonding between the solute and the solvent, and the solvent-evaporation-induced crystallization process, as well as the solvent-evaporation-induced convections are responsible for the formation of the macroscopic pattern. The results could offer a facile way to the electronic material films with well-defined spatial alignment.  相似文献   

19.
The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters’ depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.  相似文献   

20.
Multilayers of Co and Cu on Si(111) substrates have been produced by pulsed laser deposition at the second harmonic of a Nd:YAG laser (532 nm). The effect of varying the laser power on the film microstructure has been investigated using grazing incidence X-ray reflectivity measurements. Quantitative analysis of the reflectivity curves indicates that higher laser powers are associated with greater intermixing at the Co/Cu interfaces. Offset scans indicate that there is conformal roughness. The deposition process introduces some droplets into the layers, principally of Cu. PACS 61.10Kw; 68.35Ct; 68.65Ac  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号