首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《Physics letters. A》2020,384(31):126815
(Ga, Mn)As dilute magnetic semiconductor (DMS) is very promising for future spintronic devices, however, the lower Curie temperature (Tc) limits the applications. Here, using first-principles calculation based on density functional theory, we investigate the effect of the surface dangling bonds (SDBs) on the magnetic properties of Mn-doped GaAs nanowires (NWs). The results show that As (Ga)-SDBs are equivalent to holes (electrons) doping, giving rise to the magnetic moments on the surfaces of GaAs NWs. Further in the Mn-doped GaAs NWs, the SDBs can effectively regulate the total magnetic moments, due to charge transfers between the Mn-3d orbitals and the residual SDBs, which is analyzed by a carrier modulation model. Most importantly, the As-SDBs can stabilize the ferromagnetic (FM) states and enhance the Tc in Mn-doped GaAs NWs because of their shallow acceptor level with lower energy compared with Mn-3d level.  相似文献   

2.
The effect of doping on positron annihilation was studied in GaAs single crystals. The positron lifetimes in Si- and Ge-doped crystals (n-type) are similar to that in an instrinsic crystal. On the other hand, the lifetimes in Zn-, Cd-, Cr- and Mn-doped crystals (p-type) are shorter than that in an intrinsic one. The difference is small but significant.  相似文献   

3.
The local magnetic structures around substitutional 3d transition metal impurities at cation sites in zinc blende structures of III-V (GaN, GaAs) and II-VI (ZnTe) semiconductors are investigated by using a spin-polarized density functional theory. We find that Cr-, Co-, Cu-doped GaN, Cr-, Mn-doped GaAs and Cr-, Fe-, Ni-doped ZnTe are half metallic with 100% spin polarization. The magnetic moments due to these 3d transition metal (TM) ions are delocalized quite significantly on the surrounding ions of host semiconductors. These doped TM ions have long range interactions mediated through the induced magnetic moments in anions and cations of host semiconductors. For low impurity concentrations Mn in GaAs also has zero magnetic moment state due to Jahn-Teller structural distortions. Based upon half metallic character and delocalization of magnetic moments in the anions and cations of host semiconductors these above mentioned 3d TM-doped GaN, GaAs and ZnTe seem to be good candidates for spintronic applications.  相似文献   

4.
The electronic structure and magnetic properties of Mn-doped Ge, GaAs, and ZnSe nanocrystals are investigated using real space ab initio pseudopotentials constructed within the local spin-density approximation. The ferromagnetic and half-metallicity trends found in the bulk are preserved in the nanocrystals. However, the Mn-related impurity states become much deeper in energy with decreasing nanocrystalline size, causing the ferromagnetic stabilization to be dominated by double exchange via localized holes rather than by a Zener-like mechanism.  相似文献   

5.
We report the observation of a new electron paramagnetic resonance centre in neutron-irradiated GaP and a similar new EPR centre in Mn-doped GaAs. Both centres have been identified as interstitial Mn and act as a donor. To our knowledge this is the first observation by EPR of an interstitial transition-metal impurity in a III-V compound. The implication of this new finding on the issue of Mn diffusion is discussed.  相似文献   

6.
7.
We present a theory of interstitial Mn in Mn-doped ferromagnetic semiconductors. Using density-functional theory, we show that under the nonequilibrium conditions of growth, interstitial Mn is easily formed near the surface by a simple low-energy adsorption pathway. In GaAs, isolated interstitial Mn is an electron donor, each compensating two substitutional Mn acceptors. Within an impurity-band model, partial compensation promotes ferromagnetic order below the metal-insulator transition, with the highest Curie temperature occurring for 0.5 holes per substitutional Mn.  相似文献   

8.
The properties of Mn-doped GaAs layers grown by laser deposition were investigated with measurements of Hall effect and magneto-optical Kerr effect (MOKE). The electrical and magnetic parameters of the layers were defined by growth temperature and quantity of sputtered Mn. It was shown that room-temperature ferromagnetism is revealed by MOKE and, after ruby laser 25 ns pulse annealing, by Hall effect measurements.  相似文献   

9.
A unified band structure model is proposed to explain the magnetic ordering in Mn-doped semiconductors. This model is based on the p-d and d-d level repulsions between the Mn ions and host elements and can successfully explain magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such as CdTe, GaAs, ZnO, and GaN. The model can also be used to explain the interesting behavior of GaMnN, which changes from ferromagnetic ordering to antiferromagnetic ordering as the Mn concentration increases. This model, therefore, is useful to provide a simple guideline for future band structure engineering of magnetic semiconductors.  相似文献   

10.
We develop a Monte Carlo (MC) tool incorporated with the three-subband approximation model to investigate the in-plane spin-polarized transport in GaAs/GaAlAs quantum well. Using the tool, the effects of the electron occupation of higher subbands and the intersubband scattering on the spin dephasing have been studied. Compared with the corresponding results of the simple one-subband approximation model, the spin dephasing length is reduced four times under 0.125\,kV/cm of driving electric field at 300K by the MC tool incorporated with the three-subband approximation model, indicating that the three-subband approximation model predicts significantly shorter spin dephasing length with temperature increasing. Our simulation results suggest that the effects of the electron occupation of higher subbands and the intersubband scattering on the spin-dependent transport of GaAs 2-dimensional electron gas need to be considered when the driving electric field exceeds the moderate value and the lattice temperature is above 100K. The simulation by using the MC tool incorporated with the three-subband approximation model also indicates that, under a certain driving electric field and lattice temperature, larger channel widths cause spins to be depolarized faster. Ranges of the three components of the spins are different for three different injected spin polarizations due to the anisotropy of spin--orbit interaction.  相似文献   

11.
高立  张建民 《中国物理 B》2009,18(10):4536-4540
This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500~°C. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn_2p3 / 2 increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4~wt.% and 10~wt.% Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20~wt.% Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.  相似文献   

12.
Within the framework of spin-polarized generalized gradient approximation (σGGA) of the density functional theory (DFT) and pseudopotential method, the structural, magnetic, and electronic properties of graphene and graphane upon the adsorption of manganese atoms have been theoretically investigated. In contrast to the recent results (New J. Phys. 12, 063020 (2010)), Mn atom has been found to be adsorbed on a hollow-site configuration and no appreciable indication to substitute one of the C atoms of the graphene sheet. Unlike the recent results on Mn-doped graphane (Carbon 48, 3901 (2010)), the Mn adatom prefers to adsorb on the top of a carbon atom, forming a bridge with the uppermost hydrogen atoms. The magnetic moment of the Mn-doped graphene is found to be larger than that of the Mn-doped graphane. The structural parameters and electronic properties of both Mn-doped graphene and Mn-doped graphane are determined and compared with the available data.  相似文献   

13.
Ferromagnetism in Mn-doped GaAs, the prototypical dilute magnetic semiconductor (DMS), has so far been attributed to hole mediated RKKY-type interactions. First-principles calculations reveal a strong direction dependence of the ferromagnetic (FM) stabilization energy for Mn pairs, a dependence that cannot be explained within RKKY. In the limit of a hostlike hole engineered here where the RKKY model is applicable, the exchange energies are strongly reduced, suggesting that this limit cannot explain the observed ferromagnetism. The dominant contribution stabilizing the FM state is found to be maximal for 110-oriented Mn pairs and minimal for 100-oriented Mn pairs, providing an alternate explanation for magnetism in such materials in terms of energy lowering due to p-d hopping interactions, and offering a new design degree of freedom to enhance FM.  相似文献   

14.
Mn-doped ZnO samples with 5%, 20% and 40% nominal Mn concentrations were prepared in the presence of ethyl acetoacetate under solvothermal conditions. UV absorption spectroscopic analysis discloses that chemical modification was achieved by reaction of Zn or Mn precursor with ethyl acetoacetate in ethanol medium. XRD and HRTEM characterizations indicate that ZnMnO3 impurity phase was formed in the 20% and 40% Mn-doped ZnO samples while no secondary phase was present in the 5% Mn-doped sample. The 5% Mn-doped sample consists of spheroid-like particles with size of 10-50 nm and has a real Mn concentration of 3.2%. Ferromagnetism and paramagnetism coexist in the 5% Mn-doped ZnO sample at room-temperature, which may arise from ferromagnetic exchange interaction as well as small secondary phases. The 20% and 40% Mn-doped samples show large paramagnetic effects at room temperature. Small paramagnetic secondary phases and clustering of Mn are probably responsible for this.  相似文献   

15.
It is well known that the magnetic anisotropy in a compressively strained Mn-doped GaAs film changes from perpendicular to parallel with increasing hole concentration p. We study this reorientation transition at T=0 in a quantum well with delta-doped Mn impurities. With increasing p, the angle theta that minimizes the energy E increases continuously from 0 (perpendicular anisotropy) to pi/2 (parallel anisotropy) within some range of p. The shape of E(min)(p) suggests that the quantum well becomes phase separated with regions containing low hole concentrations and perpendicular moments interspersed with other regions containing high hole concentrations and parallel moments. However, because of the Coulomb energy cost associated with phase separation, the true magnetic state in the transition region is canted with 0相似文献   

16.
We employ dynamical mean-field theory to identify the materials properties that optimize T(c) for a generalized double-exchange model. We reach the surprising conclusion that T(c) achieves a maximum when the band angular momentum j equals 3/2 and when the masses in the m(j) = +/- 1/2 and +/-3/2 and subbands are equal. However, we also find that T(c) is significantly reduced as the ratio of the masses decreases from one. Consequently, the search for dilute-magnetic semiconductor materials with high T(c) should proceed on two fronts. In semiconductors with p bands, such as the currently studied Mn-doped Ge and GaAs semiconductors, T(c) may be optimized by tuning the band masses through strain engineering or artificial nanostructures. On the other hand, semiconductors with s or d bands with nearly equal effective masses might prove to have higher T(c)'s than p-band materials with disparate effective masses.  相似文献   

17.
Sharp, near band gap lines are observed in the reflection and photoluminescence spectra of GaAs/AlGaAs structures consisting of a modulation doped quantum well (MDQW) that contains a high density two-dimensional electron gas (2DEG) and is embedded in a microcavity (MC). The energy dependence of these lines on the MC-confined photon energy shows level anticrossings and Rabi splittings very similar to those observed in systems of undoped QW's embedded in a MC. The spectra are analyzed by calculating the optical susceptibility of the MDQW in the near band gap spectral range and using it within the transfer matrix method. The calculated reflection spectra indicate that the sharp spectral lines are due to k{ parallel}=0 cavity polaritons that are composed of e-h pair excitations just above the 2DEG Fermi edge and are strongly coupled to the MC-confined photons.  相似文献   

18.
I. Sopyan  A. N. Natasha 《Ionics》2009,15(6):735-741
Biphasic calcium phosphate ceramics doped with manganese (Mn-doped BCP) were prepared by using chemical doping via sol–gel technique. Four different concentrations of manganese (2, 5, 10, and 15 mol%) have been successfully incorporated into biphasic calcium phosphate (BCP) phases. X-ray diffraction analysis revealed that the phases present in the Mn-doped BCP powders are hydroxyapatite and β-tricalcium phosphate. The Mn-doped powders are more crystalline than Mn-free BCP powder as its crystallinity increased with increasing Mn content. Fourier transform infrared spectrum corresponded to this result as the peak resolutions of PO4 bands are viewed with more intensity with the increased Mn. Particle size analysis resulted in nanoscale particles for the Mn-doped and Mn-free BCP powders. From field emission scanning electron microscope observation, Mn-doped BCP powders showed nanoscale individual particles but tightly agglomerated into microscale aggregates due to progressive fusion of particles. Hence, it can be concluded that Mn acts as calcination additives of the BCP powders.  相似文献   

19.
The structural study of diluted magnetic semiconductors is important for interpreting the ferromagnetic behavior associated with the materials. In the present work, a series of low concentration Mn-doped ZnO thin films synthesized by pulsed laser deposition was studied by electron microscopy. All films show the wurtzite structure with (001) preferred growth orientation on the Si substrate. Electron diffraction experiments indicate the deterioration of the growth orientation in some areas of the films with increasing Mn concentration, and the existence of a secondary phase, of Mn2O3-type, in the films with larger Mn concentrations. High-resolution electron microscopy images confirm the existence of the secondary phase in the grain boundary of the Mn-doped ZnO phase. The magnetic properties of Mn-doped ZnO are discussed in relation to the structures of the films.  相似文献   

20.
王爱玲  毋志民  王聪  胡爱元  赵若禺 《物理学报》2013,62(13):137101-137101
采用基于密度泛函理论的第一性原理平面波超软赝势方法, 对纯LiZnAs, Mn掺杂的LiZnAs, Li过量和不足下Mn掺杂的LiZnAs体系进行几何结构优化, 计算并对比分析了体系的电子结构、半金属性、光学性质及形成能.结果表明新型稀磁半导体Li (Zn0.875Mn0.125) As, Li1.1 (Zn0.875Mn0.125) As和Li0.9 (Zn0.875Mn0.125) As均表现为100%自旋注入, 材料均具有半金属性, Li过量和不足下体系的半金属性明显增强. Li过量可以提高体系的居里温度, 改善材料的导电性, 使体系的形成能降低. 说明LiZnAs半导体可以实现自旋和电荷注入机理的分离, 磁性和电性可以分别通过Mn的掺入和Li的含量进行调控. 进一步对比分析光学性质发现, 低能区的介电函数虚部和复折射率函数明显受到Li的化学计量数的影响. 关键词: Mn掺杂LiZnAs 电子结构 光学性质 第一性原理  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号