首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed an unbiased search for the lowest-energy geometric structures of medium-sized silicon clusters SiN (27 < or = N < or = 39) using a genetic algorithm and nonorthogonal-tight-binding method, followed by a refining and biased search using basin-hopping method coupled with density-functional theory. We show that the carbon fullerene cages are most likely generic cage motifs ("magic cages") to form low-lying stuffed-cage silicon clusters (beyond the size N > 27). An empirical rule that provides optimal "stuffing/cage" combinations for constructing low-energy endohedral silicon fullerenes is suggested, with a hope that it can provide guidance to future synthesis of "bucky" silicon.  相似文献   

2.
The awesome allotropy of carbon yields innumerable topologically possible cage structures of molecular carbon. This field is also related to endohedral metallofullerenes constructed by metal‐atom encapsulation. Stable and soluble empty fullerenes and endohedral metallofullerenes are available in pure form in macroscopic amounts from carbon arc production or other physical processes followed by extraction and subsequent chromatographic separation. However, many other unidentified fullerene species, which must be reactive and insoluble in their pristine forms, remain in soot. These “missing” species must have extremely small HOMO–LUMO gaps and may have unconventional cage structures. Recent progress in this field has demonstrated that reactive fullerenes can be salvaged by exohedral derivatization, which can stabilize the reactive carbon cages. This concept provides a means of preparing macroscopic amounts of unconventional fullerenes as their derivatives.  相似文献   

3.
In this tutorial review taking X-ray crystallographically characterized compounds as a starting point a walk is taken through the electronic and structural properties of endohedral metallofullerenes. After classification of the fullerenes according to the encapsulated guest, particular attention is given to identifying factors that determine the selection of a particular carbon cage network by the internal metal cluster. Some of the physical rules that determine which particular fullerene cage is formed will be discussed. Concepts such as charge transfer between the cage and the guest metal ions, the topology of the cage, the separations between the 12 pentagons on the fullerene surface, and the effect of entropic factors are used to rationalize the selection of a particular cage. The roles of electrochemistry and vibrational spectroscopy in combination with theoretical calculations are considered in understanding the structures of the endohedral fullerenes.  相似文献   

4.
Using density functional theory method we show that hollow silicon fullerene cages, SiN (20相似文献   

5.
The smallest fullerene to form in condensing carbon vapor has received considerable interest since the discovery of Buckminsterfullerene, C(60). Smaller fullerenes remain a largely unexplored class of all-carbon molecules that are predicted to exhibit fascinating properties due to the large degree of curvature and resulting highly pyramidalized carbon atoms in their structures. However, that curvature also renders the smallest fullerenes highly reactive, making them difficult to detect experimentally. Gas-phase attempts to investigate the smallest fullerene by stabilization through cage encapsulation of a metal have been hindered by the complexity of mass spectra that result from vaporization experiments which include non-fullerene clusters, empty cages, and metallofullerenes. We use high-resolution FT-ICR mass spectrometry to overcome that problem and investigate formation of the smallest fullerene by use of a pulsed laser vaporization cluster source. Here, we report that the C(28) fullerene stabilized by encapsulation with an appropriate metal forms directly from carbon vapor as the smallest fullerene under our conditions. Its stabilization is investigated, and we show that M@C(28) is formed by a bottom-up growth mechanism and is a precursor to larger metallofullerenes. In fact, it appears that the encapsulating metal species may catalyze or nucleate endohedral fullerene formation.  相似文献   

6.
The production, isolation, and spectroscopic characterization of a new Dy3N@C80 cluster fullerene that exhibits three isomers (1-3) is reported for the first time. In addition, the third isomer (3) forms a completely new C80 cage structure that has not been reported in any endohedral fullerenes so far. The isomeric structures of the Dy3N@C80 cluster fullerene were analyzed by studying HPLC retention behavior, laser desorption time-of-flight (LD-TOF) mass spectrometry, and UV-Vis-NIR and FTIR spectroscopy. The three isomers of Dy3N@C80 were all large band-gap (1.51, 1.33, and 1.31 eV for 1-3, respectively) materials, and could be classified as very stable fullerenes. According to results of FTIR spectroscopy, the Dy3N@C80 (I) (1) was assigned to the fullerene cage C80:7 (I(h)), whereas Dy3N@C80 (II) (2) had the cage structure of C80:6 (D(5h)). The most probable cage structure of Dy3N@C80 (III) (3) was proposed to be C80:1 (D(5d)). The significant differences between Dy3N@C80 and other reported M3N@C80 (M = Sc, Y, Gd, Tb, Ho, Er, Tm) cluster fullerenes are discussed in detail, and the strong influence of the metal on the nitride cluster fullerene formation is concluded.  相似文献   

7.
C~4~0, C~4~0^+, Nb@C~4~0^+, NbC~3~9^+, Nb@C~4~0H~4^+的 量子化学研究   总被引:1,自引:0,他引:1  
用量子化学从头计算方法研究了C~4~0,C~4~0^+,Nb@C~4~0^+,NbC~3~9^+,Nb@C~4~0H~4^+的几何构型、电子结构和C~2~8一样,C~4~0(T~d)基态也为^5A~2态,笼骨架上具有四个悬挂键。计算结果表明C~4~0和C~4~0^+比NbC~3~9^+和Nb@C~4~0^+稳定,与实验结果一致。  相似文献   

8.
Density functional theory calculations (B3LYP/6-311G*) are applied to devise a series of AlN-substituted C60 fullerenes, avoiding weak homonuclear Al–Al and N–N bonds. The substitutional structures, energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ionization potentials, binding energies, as well as dipole moments have been systematically investigated. The band gap (HOMO–LUMO gap) is larger for all the AlN-substituted fullerenes than C60. The properties of heterofullerenes, especially, the HOMO–LUMO strongly depend on the number of AlN units. Natural charge analyses indicate that doping of fullerene with AlN units exerts electronic environment diversity to the cage. High charge transfer on the surfaces of our heterofullerenes provokes more studies on their possible application for hydrogen storage.  相似文献   

9.
富勒烯合成化学研究进展   总被引:2,自引:0,他引:2  
富勒烯是一类由12个五元环和若干六元环组成的笼状分子, 自20世纪80年代中期被发现以来就以其独特的结构和新奇的性质而成为科学界研究的热点, 25年来, 无论在基础研究还是在实际应用领域都有了长足的进步, 人们在发展富勒烯合成新方法和寻找富勒烯新结构方面做了大量的工作。本文对富勒烯的各种宏量合成方法进行了回顾, 并概述了迄今已发表的60余种富勒烯新结构,包括各种富勒烯空笼、内嵌富勒烯、富勒烯笼外修饰衍生物及氮杂富勒烯等结构。  相似文献   

10.
We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si(39), we examined six endohedral fullerene structures using all six homolog C(34) fullerene isomers as cage motifs. We found that the Si(39) constructed based on the C(34)(C(s):2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C(34)(C(s):2) cage motif also leads to a new candidate for the lowest-energy structure of Si(40) whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C(34)(C(1):1). Low-lying structures of larger silicon clusters Si(50) and Si(60) are also obtained on the basis of preconstructed endohedral fullerene structures. For Si(50), Si(60), and Si(80), the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10 meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si(50).  相似文献   

11.
Fullerene molecules have nano-scale cavities in which various metal or metal clusters of different sizes can be embedded to form metallofullerenes with unique core-shell structures. The physical and chemical properties of metallofullerenes can be modified through the interaction between the encapsulated metals and the fullerene cages. As such, the investigation of metallofullerenes with novel structures has been a principal research focus in the field of fullerenes. In this study, we investigated the size matching effect between encapsulated clusters and fullerene cages for the endohedral metal carbonitride clusterfullerenes in order to discover new metallofullerenes. The stability and electronic structure of the metallofullerenes formed by encapsulating M3NC clusters (M = Y, La, Gd) into D2(186)-C96 and D2(35)-C88 fullerenes were studied using quantum chemical calculations. It was found that the fullerene cages formed stable structures by accepting six electrons transferred from the encapsulated clusters. The change in configuration of the encapsulated clusters was clarified by a comparison with the corresponding M3N@C2n metal nitride clusterfullerenes; the size matching effect between M3NC cluster and fullerene cage was elucidated on the basis of the calculated results and previous studies on Sc3NC@Ih(7)-C80. For the D2(186)-C96 fullerene, the Gd3NC cluster was found to have smaller changes in the configuration as compared with the La3NC cluster, proving that Gd3NC is more suitable than La3NC for encapsulation in the D2(186)-C96 fullerene cage. In addition, it was determined that the La3NC cluster requires a large structural change to maintain its planar configuration. For the D2(35)-C88 fullerene cage, the Y3NC cluster is more suitable than Gd3NC for encapsulation owing to the smaller size of the Y3NC cluster. The spatial distribution of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of Gd3NC@D2(186)-C96 were found to be similar to those of Gd3N@D2(186)-C96. However, a unique endohedral cluster-based occupied molecular orbital was found for Gd3NC@D2(186)-C96. This orbital is derived from the interaction between the NC unit and the Gd atoms. The spatial distribution of the HOMO of Y3NC@D2(35)-C88 is similar to that of Y3N@D2(35)-C88, while the LUMO of Y3NC@D2(35)-C88 has a much larger contribution from the endohedral cluster as compared to Y3N@D2(35)-C88. Thus, the addition of a carbon atom in the cluster has a remarkable impact on the electronic structure of the metallofullerenes. With respect to structural characteristics, we found that the three fullerene cages, D2(186)-C96, D2(35)-C88, and Ih(7)-C80, have a uniform distribution of five-membered carbon atom rings; these fullerenes can be greatly stabilized in the form of C2n6- anions. However, the formation mechanism of fullerenes and metallofullerenes, at present, is poorly understood. Based on the structural analysis, we propose a direct mechanism for the formation of fullerenes without the Stone-Wales isomerization, i.e., the rearrangement of five-membered rings through the addition of carbon atoms and the transformation into larger carbon cages while maintaining stable structural units.  相似文献   

12.
Theoretical studies on structures and properties of endohedral fullerene complexes formed by encapsulating small molecules of HF, H20, NH3, and CH4 in a C32 fullerene cage, were carried out by ab initio method. Current calculations reveal that these processes to encase them in fullerene are energetically unfavorable because of the small cavity size of C32. The red shift in the F-H stretching frequency indicates the potential existence of hydrogen bonding between the HF molecule and the carbon cage.  相似文献   

13.
B3LYP/6-31G(d) hybrid HF/DFT and BLYP/6-31G(d, p) DFT calculations were carried out to determine the structural and electronic properties of the endohedral complex of C60 with Tetrahedral N4 (Td N4), N4@C60. It was demonstrated that N4 was seated in the center of the fullerene cage and the tetrahedral structure of N4 is remained in the cage. The formation of this complex is endothermic with inclusion energy of 37.92 kcal/mol. N4 endohedral doping perturbs the molecular orbitals of C60 not so much, the calculated HOMO–LUMO gaps, the electron affinity (EA) and the ionizational potential (IP) of N4@C60 are similar to that of C60.  相似文献   

14.
The most abundant fullerenes, C60 and C70, and all the pure carbon fullerenes larger than C70, follow the isolated‐pentagon rule (IPR). Non‐IPR fullerenes containing adjacent pentagons (APs) have been stabilized experimentally in cases where, according to Euler’s theorem, it is topologically impossible to isolate all the pentagons from each other. Surprisingly, recent experiments have shown that a few endohedral fullerenes, for which IPR structures are possible, are stabilized in non‐IPR cages. We show that, apart from strain, the physical property that governs the relative stabilities of fullerenes is the charge distribution in the cage. This charge distribution is controlled by the number and location of APs and pyrene motifs. We show that, when these motifs are uniformly distributed in the cage and well‐separated from one other, stabilization of non‐IPR endohedral and exohedral derivatives, as well as pure carbon fullerene anions and cations, is the rule, rather than the exception. This suggests that non‐IPR derivatives might be even more common than IPR ones.  相似文献   

15.
The density functional theory (DFT)-based Becke's three parameter hybrid exchange functional and Lee-Yang-Parr correlation functional (B3LYP) calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations have been performed to understand the stability of different anions inside fullerenes of various sizes. As expected, the stability of anion inside the fullerene depends on its size as well as on the size of the fullerene. Results show that the encapsulation of anions in larger fullerenes (smaller fullerene) is energetically favorable (not favorable). The minimum size of the fullerene required to encapsulate F(-) is equal to C(32). It is found from the results that C(60) can accommodate F(-), Cl(-), Br(-), OH(-), and CN(-). The electron density topology analysis using atoms in molecule (AIM) approach vividly delineates the interaction between fullerene and anion. Although F(-)@C(30) is energetically not favorable, the BOMD results reveal that the anion fluctuates around the center of the cage. The anion does not exhibit any tendency to escape from the cage.  相似文献   

16.
We report here for the first time a full comparison of the exohedral reactivity of a given fullerene and its parent trinitride template endohedral metallofullerene. In particular, we study the thermodynamics and kinetics for the Diels-Alder [4 + 2] cycloaddition between 1,3-butadiene and free D3h'-C78 fullerene and between butadiene and the corresponding endohedral D3h-Sc3N@C78 derivative. The reaction is studied for all nonequivalent bonds, in both the free and the endohedral fullerenes, at the BP86/TZP//BP86/DZP level. The change in exohedral reactivity and regioselectivity when a metal cluster is encapsulated inside the cage is profound. Consequently, the Diels-Alder reaction over the free fullerene and the endohedral derivative leads to totally different cycloadducts. This is caused by the metal nitride situated inside the fullerene cage that reduces the reactivity of the free fullerene and favors the reaction over different bonds.  相似文献   

17.
We have performed both semiempirical as well as ab initio density functional theory calculations in order to investigate the structural stability of highly hydroxylated C60(OH)32 fullerenes, so-called fullerenols. Interestingly, we have found that low-energy atomic configurations are obtained when the OH groups are covering the C60 in the form of small hydroxyl islands. The previous formation of OH molecular domains on the carbon surface, stabilized by hydrogen bonds between neighboring OH groups, defines the existence of C60(OH)32 fullerene structures with some elongated C-C bonds, closed electronic shells, and large highest occupied-lowest unoccupied molecular orbital energy gaps, with the latter two being well-known indicators of high chemical stability in these kind of carbon compounds. The calculated optical absorption spectra show that the location of the first single dipole-allowed excitation strongly depends on the precise distribution of the OH groups on the surface, a result that, combined with optical spectroscopy experiments, might provide an efficient way to identify the structure of these kinds of fullerene derivatives. We found that the presence of a few coadsorbed oxygen species on the fullerene surface leads in general to the existence of C60(OH)32O(x) (x = 1-4) compounds in which some of the C-C bonds just below the O impurities are replaced by C-O-C bridge bonds, leading to the formation of stable carbon-opened structures in agreement with the recent experimental work of Xing et al. (J. Phys. Chem. B 2004, 108, 11473). Actually, a more dramatic cage destruction is obtained when considering multiply charged C60(OH)32O(x)(+/-m) (m = 2, 4, 6) species (that can exist in both gas-phase and aqueous environments), where now sizable holes made of 9- and 10-membered rings can exist in the carbon network. We believe that our results are important if the controlled opening of carbon cages is needed and it should be taken into account also in several technological applications where the permanent encapsulation of atomic or molecular species in these types of fullerene derivatives is required.  相似文献   

18.
We conducted a combined anion photoelectron spectroscopy and density functional theory study on the structural evolution of copper-doped silicon clusters, CuSi(n)(-) (n = 4-18). Based on the comparison between the experiments and theoretical calculations, CuSi(12)(-) is suggested to be the smallest fully endohedral cluster. The low-lying isomers of CuSi(n)(-) with n ≥ 12 are dominated by endohedral structures, those of CuSi(n)(-) with n < 12 are dominated by exohedral structures. The most stable structure of CuSi(12)(-) is a double-chair endohedral structure with the copper atom sandwiched between two chair-style Si(6) rings or, in another word, encapsulated in a distorted Si(12) hexagonal prism cage. CuSi(14)(-) has an interesting C(3h) symmetry structure, in which the Si(14) cage is composed by three four-membered rings and six five-membered rings.  相似文献   

19.
The encapsulation of molecular hydrogen into an open-cage fullerene having a 16-membered ring orifice has been investigated. It is achieved by the pressurization of H2 at 0.6-13.5 MPa to afford endohedral hydrogen complexes of open-cage fullerenes in up to 83% yield. The efficiency of encapsulation is dominantly dependent on both H2 pressure and temperature. Hydrogen molecules inside the C60 cage are observed in the range of -7.3 to -7.5 ppm in 1H NMR spectra, and the formations of hydrogen complexes are further confirmed by mass spectrometry. The trapped hydrogen is released by heating. The activation energy barriers for this process are determined to be 22-24 kcal/mol. The DSC measurement of the endohedral H2 complex reveals that the escape of H2 from the C60 cage corresponds to an exothermic process, indicating that encapsulated H2 destabilizes the fullerene.  相似文献   

20.
Carbon 1s shake-up spectra of fullerenes C(60), C(70), and C(82) and single-walled carbon nanotubes (SWCNTs) of (5,5), (6,5), and (7,6) have been investigated by using equivalent core hole Kohn-Sham density functional theory approach, in which only one-electron transition between molecular orbitals within core-hole potential is considered. The calculated spectra are generally in good agreement with results of equivalent core-hole time-dependent density functional theory calculations and available experiments, and reliable assignments for the complicated shake-up spectra of such large systems are provided. Calculations have also been performed for endohedral metallofullerene Gd@C(82) to demonstrate the possible use of shake-up processes to identify the charge transfer between the metal ion and the carbon cage. It is found that the exciton binding energy of all systems under investigation is around 0.5 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号