首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
La2-xSrxMo2O9-α仅的制备及氧离子导电性能   总被引:1,自引:0,他引:1  
用固相反应法合成了立方相陶瓷样品La2-xSrxMo2O9-α(x=0.05,0.10,0.15).采用交流阻抗谱、气体浓差电池和氧泵(氧的电化学透过)等多种电化学方法研究了样品在550~1000℃下氧离子的导电性质.结果表明:La2-xSrxMo2O9-α陶瓷在氧化性气氛中几乎是纯的氧离子导体;在还原性气氛中为氧离子和电子的混合导体;掺杂量x对样品的电导率有着明显影响,其中x=0.10的样品La1.9Sr0.1Mo2O9具有最高的氧离子电导率,1000℃时的氧离子电导率约为0.17 S·cm-1.  相似文献   

2.
3.
超细氮碳化物中吸附氧和化合氧的测定   总被引:5,自引:0,他引:5  
陈名浩  沈汝美 《分析化学》1994,22(7):698-701
用跟踪式程序升温、红外检测和微机解卷技术,测定氮碳化物超细粉的吸附氧和化合氧,探讨了超细Si3N4,AIN,TiCN和SiC中不同状态氧量与其制备方法,颗粒度及放置时间的关系。  相似文献   

4.
5.
The structure and catalytic properties of SrTi0.9M0.1O3-δ (M=Mg,Al, Zr) perovskite-type catalysts for ox-idative coupling of methane (OCM) have been studied by using X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption of oxygen(O2-TPD) methods. It has been shown that doping the cations of lower valence (e.g. Mg2+, Al3+) to the B site of SrTi0.9M0.1O3-δ perovskite-type catalysts results in the higher content of adsorbed oxygen species on the surface of catalysts and thus higher C2-selectivity for OCM reaction. It is suggested that the oxygen vacancies of SrTi0.9M0.1O3-δ (M=Mg, Al, Zr) perovskite-type catalysts are the sites responsible for oxygen activation, and the adsorbed oxygen species on the surface of SrTi0.9M0.1O3-δ catalysts are the main active species for OCM reaction.  相似文献   

6.
王来来  马忠乾 《分子催化》1993,7(4):317-322
在以钙钛矿型稀土—过渡金属复合氧化物为催化剂的研究中,非化学计量氧和点缺陷是很重要的.王承宪等对钙钛矿型催化剂Ca_xLa_(1-x)MnO_(3+λ)(0≤X≤1)中的缺陷及其在氨氧化中的作用进行了研究,发现非计量氧(λ)为x值的函数,催化剂的活性可以用非计量氧或不同的缺陷来说明.但是由于氧的活泼性及其状态的复杂性,致使人们较少地考察非化学计量氧的问题.  相似文献   

7.
Cu/Co/Mn基氧载体释氧动力学及机理研究   总被引:2,自引:1,他引:1  
以溶胶凝胶法制备了CuO/CuAl2O4、Co3O4/CoAl2O4以及Mn2O3/Al2O3氧载体,在流化床反应器中CO2气氛下研究了不同温度下氧载体释氧特性,并通过分析得到各氧载体的释氧动力学机理函数、活化能及指前因子等重要参数。释氧过程中,氧载体CuO/CuAl2O4中CuO、CuAl2O4均为活性相,释氧后转化为Cu2O及CuAlO2,而Co3O4/CoAl2O4及Mn2O3/Al2O3中CoAl2O4和Al2O3均为惰性相,仅有Co3O4和Mn2O3参与释氧并分别转化为CoO和Mn3O4。三种氧载体的释氧过程均可由成核-核生长机理描述,释氧初期氧载体经化学反应形成新的活性核心,随后活性核心聚集形成还原态的氧载体团簇。各氧载体释氧的机理函数G(x)有不同的表达式,CuO/CuAl2O4、Co3O4/CoAl2O4、Mn2O3/Al2O3释氧的活化能E分别为226.37、130.06和65.90 kJ/mol,相对应的指前因子A分别为2.99×106、4.96×103和27.37 s-1。  相似文献   

8.
氧化镍中非化学计量氧在乙烷氧化脱氢中的作用   总被引:12,自引:2,他引:12  
以纯NiO为模型催化剂考察了乙烷氧化脱氢(ODHE)性能,发现非化学计量氧的存在与反应的活性及选择性密切相关.TGA研究结果表明,500℃制备的样品具有x≈6%的非化学计量氧.H2TPR结果表明,非化学计量氧与晶格氧的可还原性明显不同;O2TPDMS又把非化学计量氧区分为两个氧物种,O-2和O-(或O2-2).脉冲试验结果表明,非化学计量氧对ODHE制乙烯是选择性反应的活性氧物种,晶格氧是完全氧化反应的活性氧物种.一旦催化剂中非化学计量氧耗尽并动用晶格氧时,催化剂便有Ni0生成,表现出自催化性能,使反应活性迅速提高,但产物均为CO2,CO,CH4等完全燃烧或裂解产物.为保持有较高的乙烯收率,反应处于稳态时Ni必须处于高价态.电导测定结果表明,优良的ODHE催化剂应有P型半导性.  相似文献   

9.
Photocatalytic oxidation is a promising technology for governing emission of environmental pollutants and managing energy crisis. Typically, the photocatalytic performance of photocatalysts is highly dependent on the type of exposed crystal surfaces. As a semiconductor oxide photocatalyst, the different exposed crystal surfaces of bismuth oxyiodide (BiOI) exhibit different photocatalytic oxidation performances. In this study, we chose BiOI as the model material and provided a novel method to improve the photocatalytic oxidation performance by regulating the main exposed crystal facets. Using boron nitride (BN) nanosheets as the templates, two-dimensional/two-dimensional (2D/2D) BiOI/BN nanocompounds were fabricated via an in situ growth method. Owing to the electrostatic interaction, the positively charged BiOI {001} facets prefer to contact the negatively charged BN {001} facet, thus inducing the exposure of BiOI {110} facets. This was identified via X-ray diffraction and transmission electron microscopy analyses. Compared with BiOI {001} facets, there were more lattice oxygen atoms in the BiOI {110} facets. Thus, the exposure of BiOI {110} facets would promote more surface lattice oxygen atoms exposed on the surface of BiOI, which was confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. To evaluate the photocatalytic oxidation performance of BiOI/BN, the photocatalytic NO oxidation reaction was tested under visible light irradiation (λ > 420 nm). Among all the nanocompounds, the BiOI/BN-1.0:1.4 nanocompound exhibited the best NO oxidation ratio of 44.2%, which was almost 30 times higher than that of pristine BiOI (1.4%). The enhanced photocatalytic activity could be attributed to the following two aspects. One, the successful combination of BN effectively promoted the separation of photogenerated carriers, which was identified by steady-state and time-resolved fluorescence spectra, transient photocurrent responses, and electrochemical impedance spectra. Two, benefiting from the introduction of BN nanosheets, BiOI tends to mainly expose the oxygen-rich {110} facets. As a result, the content of O on the BiOI surface increased from 38.3% to 46.6%. Thus, NO preferred to adsorb on the {110} facets of BiOI nanosheets, which was confirmed by theoretical and experimental results. More importantly, the adsorbed NO spontaneously combined with the lattice oxygen atom of the BiOI (110) surface to form nitrogen dioxide (NO2). These findings can provide a novel strategy to tune exposed oxygen-rich facets by constructing 2D/2D photocatalysts for ensuring efficient photocatalytic oxidation performance.   相似文献   

10.
The effect of dopant valence on oxygen desorption and oxygen permeability of SrCo0.4Fe0.5M0.1O3-δ (M = Ni, Al and Zr) mixed-conducting oxides were investigated in detail by O2-TPD and oxygen permeation measurement. The SrCo0.4Fe0.5M0.1O3-δ for M = Fe, Ni, Al and Zr were denoted as SCF, SCFN, SCFA and SCFZ, respectively. O2-TPD analysis revealed that the amount of α oxygen desorption decreased with increasing the valance of doped metal elements (SCFN 〉 SCFA SCF 〉 SCFZ). The oxygen permeation flux at the temperature ≈igher than 1148 K decreased in the order of SCFN 〉 SCF 〉 SCFZ 〉 SCFA. Single activation for oxygen permeation was observed for SCFZ oxide and the activation energies of SCF and SCFA change at around 1073 K, while the change temoerature of SCFN was about 1173 K.  相似文献   

11.
The structure and catalytic properties of SrTi1-xMgxO3-δ perovskite-type catalysts for oxidative coupling of methane (OCM) have been studied by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Temperature-programmed desorption (O2-TPD) methods. It has been shown that doping Mg2+ cations to the B site of SrTi1-xMgxO3-δ perovskite-type catalysts results in the formation of oxygen vacancies in the lattices of oxide cata-lysts. With increasing the amount of Mg2+ doped in the B site of SrTi1-xMgxO3-δ, methane conversion and C2 selectivity first increase and then decrease remarkably. The SrTi1-xMgxO3-δ catalyst with x=0.1 has the highest methane conversion and C2 yield. It is suggested that the oxygen vacancies produced by Mg2+ cations doping are the sites responsible for oxygen activation, and the adsorbed oxygen species on the surface of SrTi1-xMgxO3-δ catalysts are the main active species for OCM reaction. However, the over high content of the adsorbed oxygen species on the surface results in the complete oxidation of methane. Introducing water steam into feedstock can improve the catalytic properties of SrTi1-xMgxO3-δ perovskite-type catalysts for OCM reaction at lower temperature. The SrTi0.9Mg0.1O3-δ catalyst has the methane conversion of 28.0 % with C2 hydrocarbons selectivity of 36.8 % under reaction temperature of 550 ℃.  相似文献   

12.
柴油机排放的碳烟颗粒对人类和自然产生了严重的威胁,开发高活性低成本的碳烟燃烧催化剂是解决这一问题的关键。本文采用不同煅烧气氛(空气、真空和氮气)成功制备了含有不同浓度氧空位的α-MnO2催化剂(记为M-Air-500,M-Va-500,M-N-500,M-N-450)。M-Va-500和M-N-500催化剂在500 ℃煅烧会失去过多晶格氧,导致晶相结构发生改变,出现Mn3O4相,这与XRD和HRTEM结果一致。XPS和Soot-TPR的结果说明,适量的表面氧空位能够吸附并活化氧气分子,催化剂表面的化学吸附氧提高了催化剂的催化性能。H2-TPR结果说明适量的氧空位能够加快晶格氧的迁移,提高可移动氧物种丰度,增强催化剂的氧化能力。结合催化活性测试结果可以得出:在保持α-MnO2晶相结构的前提下,氧空位越多,催化剂表面的化学吸附氧越多,催化活性越好。  相似文献   

13.
为了探讨新生儿出现唇周紫绀与缺氧关系,选择了两组新生儿(唇周紫绀组及正常组各101例),进行了血氧饱和度检测,结果表明无论是周紫绀或是正常新生儿,只要其呼吸频率<600bpm,血氧饱和度均大于等于94%,将这两组新生儿血氧饱和度进行对比检测,证实两组均数无显著性差异(P>0.05),提示仅有唇周紫绀不能作为缺氧依据。  相似文献   

14.
Oxygen is required for treatment of patients in hospitals and at home, in industrial processes and for fuel combustion. Most commonly oxygen is produced by cryogenic or pressure swing adsorption routes. Other techniques include oxygen-ion conducting ceramic membranes, polymer membranes and chemical processes used mainly in civil aviation to reduce the condition of hypoxia at high altitudes. Water electrolysis is used mainly for the production of hydrogen with oxygen as a by-product. In order to use this system only for oxygen production, hydrogen must be utilised and disposed off safely. This, however, is not practical in many instances where there is no use for hydrogen and it poses an explosion hazard. In this paper, an electrolyser system based on polymer electrolyte membrane is described in which hydrogen produced on one side of the electrochemical cell is consumed by combining it with atmospheric oxygen, through operating the cell in a carefully configured fuel cell mode. This reduces the power consumed in the electrolysis operation by more than 35% and eliminates hydrogen in exit gases. Oxygen generated is of high quality and can be used for human consumption (portable and plug-in home care oxygen therapy devices, in hospitals, defence or aerospace requirements) and for many other industrial applications.  相似文献   

15.
通过文献研究和实验研究,得出用吸氧腐蚀原理测量空气中氧气含量,比传统用红磷燃烧测量空气中氧气含量的方法更加科学、准确,并提出改进方案。  相似文献   

16.
金红霞  伍贻康 《有机化学》2005,25(11):1372-1380
有机过氧化物目前已发展成非常重要的一类抗疟药物. 形成/引入过氧键是合成有机过氧化物的关键步骤和难点所在. 对合成有机过氧化物时常见的建立或引入过氧键的方法、各方法的适用范围及优劣所在作了简要的综述.  相似文献   

17.
In this article, an emission based, simple and fast method is proposed for the determination of gaseous oxygen. A newly synthesized fluorophore, dichloro-{2,6-bis[1-(4-dimethylamino-phenylimino) ethyl]pyridine}ruthenium(II) has been used for oxygen sensing together with oxygen carrier perfluorochemicals (PFCs) in silicon matrix. It should be noted that the solubility of oxygen in fluorocarbons is about three to ten times large as that observed in the parent hydrocarbons or in water, respectively. Employed PFCs are chemically and biochemically inert, have high dissolution capacities for oxygen, and, once doped into sensing film, considerably enhance the response of sensing agent.  相似文献   

18.
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e? process, while oxygen can be fully reduced to water by a 4 e?/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2?. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号