首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverse gas chromatography (IGC) is an established tool in the determination of the adsorption potential distribution function. This function reflects the energetic heterogeneity profile of a surface and therefore provides interesting information on the nature and population of different surface sites. IGC is shown to be a fast and accurate technique for the determination of the adsorption potential distribution function of two different graphite samples. In this paper the adsorption of acidic and basic organic vapours is studied. Unlike heterogeneity profiles determined by nitrogen measurements, experiments with polar vapours can provide additional information on the adsorption mechanism and polar sorption sites. The heterogeneity profiles of all probes used are significantly different from one another and allow discreet energy levels to be distinguished. Chemically different probes reveal different adsorption mechanisms for the graphite surface.  相似文献   

2.
The paper presents a literature review of the chromatographic methods used for investigations of the heterogeneity of solid surfaces. Special attention is paid to inverse gas chromatography (IGC). Quantitative characteristics of heterogeneity of real solid surfaces including extreme models on adsorption centre topography of the "patch-wise" and "random" types are described. Analytical and numerical methods used for calculating the adsorption energy distribution function as a quantitative measure of surface heterogeneity are presented. Special attention is paid to the condensation approximation as well as to other approximations based on this assumption. IGC is presented as a quick, precise and effective method to characterise physicochemical properties of different kinds of adsorbents. Advantages of IGC over traditional methods of gas and vapour adsorption are shown.  相似文献   

3.
The adsorption of different alkanes (linear and cyclic), aromatics, and chlorohydrocarbons onto different nonmicroporous carbons--multiwalled carbon nanotubes (CNTs), carbon nanofibers (CNFs), and high-surface-area graphites (HSAGs)--is studied in this work by inverse gas chromatography (IGC). Capacity of adsorption was derived from the isotherms of adsorption, whereas thermodynamic properties (enthalpy of adsorption, surface free energy characteristics) have been determined from chromatographic retention data. HSAGs present the highest adsorption capacity, followed by CNTs and CNFs (although CNTs present an intermediate surface area between the two HSAG studied). Among the different adsorbates tested, benzene exhibits the highest adsorption capacity, and the same trend is observed in the enthalpy of adsorption. From surface free energy data, enthalpies of adsorption of polar compounds were divided into dispersive and specific contributions. The interactions of cyclic (benzene and cyclohexane) and chlorinated compounds (trichloroethylene, tetrachloroethylene, and chloroform) with the surfaces are mainly dispersive over all the carbons tested, CNTs being the material with the highest dispersive contribution, as was deduced also from the entropy parameter. Adsorption parameters were correlated with morphological and chemical properties of the materials.  相似文献   

4.
This literature review of the fundamental developments in gas-solid adsorption isotherms includes articles published from 1933 until now. Analytical and numerical methods used for calculating the adsorption energy distribution function, as a quantitative measure of surface heterogeneity, are included. Special attention is paid to inverse gas chromatography (IGC) and more precisely to a new version of IGC known as reversed-flow gas chromatography (RF-IGC or RF-GC). RF-GC is presented as a quick, precise and effective method to investigate physicochemical properties of different kinds of adsorbents, through adsorption isotherms and related energetic parameter determinations. Advantages of the RF-GC method over traditional chromatographic methods are discussed.  相似文献   

5.
Inverse gas chromatography (IGC) is frequently used to study adsorption processes at zero surface coverage on microporous activated carbons. This allows to determine the thermodynamic adsorption parameters as equilibrium constants, V(S), standard enthalpies of adsorption, Delta HA degrees, standard free energy of adsorption, Delta GA degrees, and so on. Nevertheless, the surface areas of the adsorbents (microporous carbons in this case) are needed for this purpose. The experimental determination of the surface areas of microporous solids is not univocal and the results depend on the adsorbate employed in the measurements, usually N2 or CO2. This means that the thermodynamic parameters obtained by IGC are subjected to a degree of uncertainty depending on whether N2 or CO2 is used to determine the surface area values. The aim of this paper is to discuss which of the two surface area values is more appropriate to be used in IGC measurements at zero surface coverage. Experimental and theoretical considerations are supplied in a thorough discussion which supports that CO2 surface area value is more appropriate. Thus, it is proposed that this should be used instead of the more generally extended nitrogen specific surface area obtained by the BET equation.  相似文献   

6.
气相色谱法测定气固表面的吸附停留时间   总被引:1,自引:0,他引:1  
提出了一个用气相色谱测定气体在固体表面上吸附停留时间的方法. 经推导, 得到了测定公式.用八种烷烃及苯在硅胶上的吸附实验数据进行验证和研究, 得到了满意的结果.  相似文献   

7.
冲洗色谱特征点法测定表面分形维数初探   总被引:1,自引:0,他引:1  
在用非线性气相色谱测填料表面分形维数中,首次运用气固色谱(ECP法(elution by characteristic points method),测定了正戊烷、正已烷、正庚烷3种烷烃在不同颗粒大小的硅胶表面的吸附等温线,通过拟合Langmuir方程,求出单分子饱和吸附容量,并采用单分子层吸附的分形模型,求得硅胶的发形维数,提供了一种测定表面分形维数的新方法。  相似文献   

8.
The present work focused on the surface characterization and fragrance interactions of a common cotton towel at different relative humidities (RHs) using inverse gas chromatography (IGC) and dynamic vapour sorption. The sigmoidal water sorption isotherms showed a maximum of 16% (w/w) water uptake with limited swelling at 100% RH. This means that water interacts strongly with cotton and might change its initial physico-chemical properties. The same cotton towel was then packed in a glass column and characterized by IGC at different relative humidities, calculating the dispersive and specific surface energy components. The dispersive component of the surface energy decreases slightly as a function of relative humidity (42 mJ/m2 at 0% RH to 36 mJ/m2 at 80% RH) which would be expected from swelling of the humidified cotton. The Gutmann's donor constant Kd increased from 0.28 kJ/mol at 0% RH to 0.42 kJ/mol at 80% RH, indicating that a greater hydrophilic surface exists at 80% RH, which is also as expected. Water, undecane and four fragrance molecules (dimetol, benzyl acetate, decanal and phenylethanol) were used to investigate cotton-fragrance interactions between 0 and 80% RH. The adsorption enthalpies and the Henry's constants were calculated and are discussed. The higher values for the adsorption enthalpies of polar molecules such as dimetol and phenylethanol suggest the presence of hydrogen bonds as the main adsorption mechanism. The Henry's constant of dimetol was also determined by headspace gas chromatography measurements at 20% RH, giving a similar value (230 nmol/Pa g by IGC and 130 nmol/Pa g by headspace GC), supporting the usefulness of IGC for such determinations. This work confirms the usefulness of chromatographic methods to investigate biopolymers such as textiles, starches and hairs.  相似文献   

9.
The methods to obtain the dispersive component of the surface energy (gamma(s)(d)) of active carbons (AC) from inverse gas chromatography (IGC) measurements usually render values much higher than those obtained by other techniques. In this paper this is ascribed to two factors: (i) the high temperatures at that IGC measurements are carried out and (ii) the microporosity of the AC. It is shown that the temperature dependence of the area of the methylene group is an important factor in the high gamma(s)(d) values. Thus, corrections for this dependence should be considered in the calculations. In relation to microporosity, the cooperative effect of the pore walls is also an important factor to be considered in the evaluation of gamma(s)(d). The values gamma(s)(d) obtained after these corrections have their own physical meaning related to ideal flat carbon surfaces. Critical comments are made about some reported relationships between gamma(s)(d), obtained from IGC, and the BET surface area or pore volume of AC as determined from nitrogen adsorption at 77K. These are based on the very different experimental conditions at which nitrogen and IGC measurements are carried out.  相似文献   

10.
Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to identify a reactive surface intermediate in situ during hydrogenation of benzene on a Pt(111) single crystal surface at Torr pressures. Upon adsorption at 310 K, both chemisorbed and physisorbed benzene coexist on the surface, a result which has not previously been observed. Kinetic measurements show a linear compensation effect for the production of both cyclohexane and cyclohexene. From these data the isokinetic temperature was identified and correlated to the chemisorbed benzene species, which were probed by means of vibrational spectroscopy. Additionally, chemisorbed benzene was determined to be a reactive intermediate, which is critical for hydrogenation.  相似文献   

11.
Inverse gas chromatography (IGC) at infinite dilution has been widely used to access the nonspecific surface free energy of solid materials. Since most practical surfaces are heterogeneous, the effective surface energy given by IGC at infinite dilution is somehow averaged over the whole sample surface, but the rule of averaging has thus far not been established. To address this problem, infinite dilution IGC analysis was carried out on mixtures of known heterogeneity. These materials are obtained by mixing two types of solid particles with significantly different surface energies as characterized individually with IGC, and results are obtained for binary combinations in varying proportions. It is found that when all surface components have the same accessibility by probe molecules, the effective surface energy of such a heterogeneous surface is related to the surface energy distribution by a square root linear relationship, square root sigma(eff)(LW)= summation operator (i)phi(i) square root sigma(i)(LW), where sigma(i)(LW) refers to the nonspecific (Lifshitz-van der Waals) surface energy of patches i, and phi(i) to their area fraction.  相似文献   

12.
Inverse gas chromatography (IGC) has been used in this work for characterizing the adsorption of different volatile organic compounds (VOCs) (1,2-dichloroethane (DCE), trichloroethylene (TCE), and n-hexane) over ceria-zirconia mixed oxides (Ce(x)Zr(1-x)O2, with x = 0, 0.15, 0.5, 0.68, 0.8 and 1). These materials have shown to be very active catalysts for the deep oxidation of the studied VOCs in previous papers. The enthalpies of adsorption (-deltaH(ads)), adsorption isotherms (corresponding to the Henry region), and dispersive (gamma(s)(D)) and specific (I(sp)) components of the surface energy for the adsorption of the investigated compounds are determined using IGC at infinite dilution. These chromatographic data and other surface parameters (surface area, oxygen storage capacity, surface acidity, and reducibility) are correlated with the activity and selectivity of these catalysts. As a result, for n-hexane, the catalytic activity is mainly correlated with the adsorption capacity of the solids, whereas the activity for chlorinated compounds oxidation (as well as the selectivity to oxidation products) depends on both oxygen storage capacity and specific interaction of the chlorinated compound with the surface.  相似文献   

13.
Inverse gas chromatography (IGC) is a versatile tool for the characterization of porous solids. IGC at finite dilution has historically been used for isotherm measurements because of fast equilibration times. A combination of IGC with a flash thermodesorption method allows the separation of micropores and outer surface contributions due to different adsorption mechanisms. Whereas the outer surface and the mesopores have a mono-/multilayer sorption mechanism, the micropores are filled according to the "theory of volume filling of micropores" model. Therefore, a higher energy is required for desorption out of micropores than for desorption out of mesopores and from the surface. This difference is used to calculate two separate isotherms respective to each contribution. Four aluminas with different microporosities are investigated to show the benefit of this approach. Copyright 2000 Academic Press.  相似文献   

14.
Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result.  相似文献   

15.
The scope of this work is to carry out a systematic comparison of inverse gas chromatography (IGC) and microcalorimetry as tools for the study of the gas-phase adsorption of organic vapours (using hexane as model compound) on zeolitic materials (using different Mn, Co and Fe-exchanged NaX and CaA zeolites). Adsorption isotherms were recorded using both techniques in the temperature range of 150-250 degrees C, being observed that the shape of the isotherms obtained with the dynamic (IGC) and static (microcalorimetry) techniques was surprisingly similar in the pressure range at which both techniques are applicable (low surface coverages). Concerning to the measurement of the strength of the adsorption, calorimetric data provide two parameters related to the adsorption enthalpy: the initial differential heat and the isosteric adsorption enthalpy. A great coincidence was found between the last one and the adsorption enthalpy determined by IGC (4-20% of difference, depending on the studied material). The behaviour of the initial differential heat depends strongly on the studied material, being in some cases closely related to the other two parameters and temperature-independent (in the case on Mn-exchanged zeolites), whereas for the Co-CaA and Fe-CaA zeolites, it is temperature-dependent, being not correlated with the other parameters in this case. The main conclusion of this work is that IGC is an attractive alternative to the static microcalorimetric data for obtaining information on the adsorption of organic compounds on microporous materials.  相似文献   

16.
Rectangular thin-channel columns were designed to determine partition and diffusion coefficients of small molecular weight solvents in polymer membranes based on the inverse gas chromatography (IGC) technique. The advantage of using this novel column was analyzed in terms of uniform distribution of polymer thickness, ease of preparation of stationary phase (thin polymer layer), and repeated use of the column. A mathematical model was developed to describe the velocity profile of the carrier gas, and both the time- and location-dependent concentration profiles of solvent in the column. By using the moment analysis method, the partition coefficient and diffusion coefficient were related to the dimensionless first moment and dimensionless second central moment of the elution curve of the solvent, respectively.The first dimensionless moment of the elution curve was found to be independent of the carrier gas velocity, while the second central moment increased with the increase of the carrier gas velocity. Both these behaviors support the theoretical predictions. The diffusion and partition coefficients of ethanol were obtained on polymers of cellulose diacetate (CDA) and sulfonated poly(ether ether ketone) (SPEEK) with a sulfonation degree of 79% over different temperature ranges. Based on the Arrhenius formula, the diffusion activation energies and the solvent dissolution enthalpies in both polymers were also obtained. The diffusion coefficients of 1-propanol were also obtained using two different lengths of columns.  相似文献   

17.
周良芹  付大友  袁东  范金龙  谭文渊 《色谱》2015,33(1):96-100
采用水热合成法制备了锌镁铝类水滑石(ZnMgAl-HTLC),利用X射线衍射仪(XRD)对ZnMgAl-HTLC的晶体结构进行了表征,并以一系列非极性和极性分子为探针分子,采用反气相色谱法(IGC)研究了ZnMgAl-HTLC的表面性能.结果表明:XRD特征衍射峰窄、尖、高,水热合成法能够制得纯度较高的ZnMgAl-HTLC; ZnMgAl-HTLC表面吸附自由能小于零,表面色散自由能最大为6.02 mJ/m2,酸碱作用自由能最大为5.33 kJ/mol,吸附焓为43.6 kJ/mol,吸附熵为0.15 kJ/mol.本文的反气相色谱方法对研究锌镁铝类水滑石的表面性能具有重要的指导意义.  相似文献   

18.
奥美拉唑对映体在自制手性柱上吸附等温线的测定   总被引:1,自引:0,他引:1  
采用吸附-脱附法研究了奥美拉唑对映体在自制的纤维素三苯基氨基甲酸酯涂敷型手性柱上的吸附性能,并用Langmuir方程拟合出吸附平衡方程.当样品浓度降低时,Langmuir方程退化为直线关系,直线斜率即为吸附平衡常数.这一吸附平衡常数与从脉冲色谱流出曲线求得的吸附平衡常数相等,表明吸附-脱附法测得的吸附平衡关系准确,Langmuir方程能描述这一吸附平衡关系.  相似文献   

19.
Cellulose-binding domains (CBD) are modular peptides, present in many glycanases, which anchor these enzymes to the substrate. In this work, the effect of CBD adsorption on the surface properties of a model cellulose, Whatman CF11, was studied. The methods applied include inverse gas chromatography (IGC), ESCA, X-ray diffraction, and scanning electron microscopy (SEM). The CBD partition affinity (0.85 L/g) was calculated from adsorption isotherms. However, true adsorption equilibrium does not exist, since CBDs are apparently irreversibly adsorbed to the fibers. Both IGC and ESCA showed that fibers with adsorbed CBD have a lower acidic character and also a slightly higher affinity toward aliphatic molecules. This may however be a consequence of an increased surface area, a hypothesis that is supported by microscopic observations. The crystallinity index was not affected by CBD treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号