首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This study derives a model for the vortex-induced vibration and the stochastic response of a tall building in strong non-synoptic wind regimes. The vortex-induced stochastic dynamics is obtained by combining turbulent-induced buffeting force, aeroelastic force and vortex-induced force. The governing equations of motion in non-synoptic winds account for the coupled motion with nonlinear aerodynamic damping and non-stationary wind loading. An engineering model, replicating the features of thunderstorm downbursts, is employed to simulate strong non-synoptic winds and non-stationary wind loading. This study also aims to examine the effectiveness of the wavelet-Galerkin (WG) approximation method to numerically solve the vortex-induced stochastic dynamics of a tall building with complex wind loading and coupled equations of motions. In the WG approximation method, the compactly supported Daubechies wavelets are used as orthonormal basis functions for the Galerkin projection, which transforms the time-dependent coupled, nonlinear, non-stationary stochastic dynamic equations into random algebraic equations in the wavelet space. An equivalent single-degree-of-freedom building model and a multi-degree-of-freedom model of the benchmark Commonwealth Advisory Aeronautical Research Council (CAARC) tall building are employed for the formulation and numerical analyses. Preliminary parametric investigations on the vortex-shedding effects and the stochastic dynamics of the two building models in non-synoptic downburst winds are discussed. The proposed WG approximation method proves to be very powerful and promising to approximately solve various cases of stochastic dynamics and the associated equations of motion accounting for vortex shedding effects, complex wind loads, coupling, nonlinearity and non-stationarity.  相似文献   

2.
3.
In this study, an improved nonlinear reduced-order model composed of a linear part and a nonlinear part is explored for transonic aeroelastic systems. The linear part is identified via the eigensystem realization algorithm and the nonlinear part is obtained via the Levenberg–Marquardt algorithm. The impulsive signal is chosen as the training signal for the linear part and the sinusoidal signal is used to determine the order of the linear part. The training signal for the nonlinear part is selected as the filtered white Gaussian noise with the maximal amplitude and frequency range to be designed via the aeroelastic responses. An NACA64A010 airfoil and an NACA0012 airfoil are taken as illustrative examples to demonstrate the performance of the presented reduced-order model in modeling transonic aerodynamic forces. The aeroelastic behaviors of the two airfoils are obtained via computational fluid dynamics to solve the Euler equation and the Navier–Stokes equation, respectively. The numerical results demonstrate that the presented reduced-order model can successfully predict the nonlinear aerodynamic forces with and without viscous flows. Moreover, the presented reduced-order model is capable of capturing the flutter velocity and modeling complex aeroelastic behaviors, including limit-cycle oscillations, beat phenomena and nodal-shaped oscillations at the transonic Mach numbers with high accuracy.  相似文献   

4.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

5.
We introduce a method for tracking nonlinear oscillations and their bifurcations in nonlinear dynamical systems. Our method does not require a mathematical model of the dynamical system nor the ability to set its initial conditions. Instead it relies on feedback stabilizability, which makes the approach applicable in an experiment. This is demonstrated with a proof-of-concept computer experiment of the classical autonomous dry-friction oscillator, where we use a fixed time step simulation and include noise to mimic experimental limitations. For this system we track in one parameter a family of unstable nonlinear oscillations that forms the boundary between the basins of attraction of a stable equilibrium and a stable stick-slip oscillation. Furthermore, we track in two parameters the curves of Hopf bifurcation and grazing-sliding bifurcation that form the boundary of the bistability region. PACS 05.45-a, 02.30.Oz, 05.45.Gg Mathematics Subject Classification (2000) 37M20, 37G15, 37M05 The research of J.S. was supported by EPSRC grant GR/R72020/01, and that of B.K. by an EPSRC Advanced Research Fellowship.  相似文献   

6.
Pellicano  F.  Mastroddi  F. 《Nonlinear dynamics》1997,14(4):335-355
The nonlinear dynamics of a simply supported beam resting on a nonlinear spring bed with cubic stiffness is analyzed. The continuous differential operator describing the mathematical model of the system is discretized through the classical Galerkin procedure and its nonlinear dynamic behavior is investigated using the method of Normal Forms. This model can be regarded as a simple system describing the oscillations of flexural structures vibrating on nonlinear supports and then it can be considered as a simple investigation for the analysis of more complex systems of the same type. Indeed, the possibility of the model to exhibit actually interesting nonlinear phenomena (primary, superharmonic, subharmonic and internal resonances) has been shown in a range of feasibility of the physical parameters. The singular perturbation approach is used to study both the free and the forced oscillations; specifically two parameter families of stationary solutions are obtained for the forced oscillations.  相似文献   

7.
We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree–Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus. The electrons are supposed to move under the action of a time dependent, rapidly periodically oscillating electromagnetic potential. This can be considered a simplified effective single particle model for an X-ray free electron laser. We prove the existence and uniqueness for the Cauchy problem and the convergence of wave-functions to corresponding solutions of a Schrödinger equation with a time-averaged Coulomb potential in the high frequency limit for the oscillations of the electromagnetic potential.  相似文献   

8.
In this paper, we firstly apply generalized difference methods to solve a fluid mixture model. The model is usually used to describe the tissue deformations and contains a nonlinear hyperbolic equation and an elliptic equation. Most people have used finite difference methods for solving the elliptic equation and other schemes for solving the hyperbolic equation. It is well known that the accuracy of traditional finite difference method is not high. This may be a serious disadvantage in the fluid mixture model, which describes cell movements and tissue deformations. The numerical methods we propose to improve accuracy are based on generalized Galerkin methods and dual decomposition. By choosing suitable trial function space and test function space, our generalized upwind difference schemes exhibit second‐order convergence in space for smooth problems and can eliminate numerical oscillations for discontinuous problems. Some numerical results are presented to demonstrate the advantages of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A general low-order fluid–structure interaction model capable of evaluating the multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures is presented. Cross-flow motions due to unsteady lift forces of inclined sagged cables and tensioned beams in uniform currents are investigated. In contrast to a linear equation governing the transverse motion of straight beams or cables typically considered in the literature, coupled horizontal/vertical (axial/transverse) displacements and geometric nonlinearities of curved cable (straight beam) are accounted for. A distributed nonlinear wake oscillator is considered in the approximation of space–time varying hydrodynamics. This semi-empirical fluid force model in general depends on the mass-damping parameter and has further been modified to capture both the effects of varying initial curvatures of the inclined cylinder and the Reynolds number. Numerical simulations are performed in the case of varying flow velocities and parametric results highlight several meaningful aspects of vortex-induced vibrations of long flexible cylinders. These comprise multi-mode lock-in, sharing, switching and interaction features in the space and time domains, the estimated maximum modal and total amplitudes, the resonant nonlinear modes of flexible cylinders and their space–time modifications, and the influence of fluid/structure parameters. A shortcoming of single-mode or linear structural model is underlined. Some quantitative and qualitative comparisons of numerical/experimental results are discussed to demonstrate the validity and required improvement of the proposed modelling and analysis predictions.  相似文献   

10.
We investigate the potential of using a piezoelectric energy harvester to concurrently harness energy from base excitations and vortex-induced vibrations. The harvester consists of a multilayered piezoelectric cantilever beam with a circular cylinder tip mass attached to its free end which is placed in a uniform air flow and subjected to direct harmonic excitations. We model the fluctuating lift coefficient by a van der Pol wake oscillator. The Euler–Lagrange principle and the Galerkin procedure are used to derive a nonlinear distributed-parameter model for a harvester under a combination of vibratory base excitations and vortex-induced vibrations. Linear and nonlinear analyses are performed to investigate the effects of the electrical load resistance, wind speed, and base acceleration on the coupled frequency, electromechanical damping, and performance of the harvester. It is demonstrated that, when the wind speed is in the pre- or post-synchronization regions, its associated electromechanical damping is increased and hence a reduction in the harvested power is obtained. When the wind speed is in the lock-in or synchronization region, the results show that there is a significant improvement in the level of the harvested power which can attain 150 % compared to using two separate harvesters. The results also show that an increase of the base acceleration results in a reduction in the vortex-induced vibrations effects, an increase of the difference between the resonant excitation frequency and the pull-out frequency, and a significant effects associated with the quenching phenomenon.  相似文献   

11.
Wu  B. S.  Lim  C. W.  He  L. H. 《Nonlinear dynamics》2003,32(1):1-13
This paper deals with nonlinear oscillations of a conservative,nonnatural, single-degree-of-freedom system with odd nonlinearity. Bycombining the linearization of the governing equation with the method ofharmonic balance, we establish approximate analytical solutions for thenonlinear oscillations of the system. Unlike the classical harmonicbalance method, the linearization is performed prior to proceeding withharmonic balancing thus resulting in linear algebraic equations insteadof nonlinear algebraic equations. Hence, we are able to establish theapproximate analytical formulas for the exact period and periodicsolution. These approximate solutions are valid for small as well aslarge amplitudes of oscillation. Two examples are presented toillustrate that the proposed formulas can give excellent approximateresults.  相似文献   

12.
NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT   总被引:2,自引:0,他引:2  
IntroductionThe casing pipes are widely used for drilling wells in the ocean. As depth of waterreaches100m or more than100m, the relative stiffness of a casing pipe is reduced and thenatural frequency of a casing pipe may be close to shedding frequency of…  相似文献   

13.
We investigate the effect of delay in feedback on the oscillation characteristics (amplitude and frequency) of a string generator, which, as is well known, works in a self-induced oscillation mode and is a part of a string accelerometer (a device for measuring the acceleration of ballistic missiles, launch vehicles, and other moving objects). A mathematical model of the dynamics of a string generator is taken in the form of a quasilinear second-order hyperbolic equation with constant delay with respect to one of independent variables (time). For the analysis of the mathematical model, we use the one-frequency asymptotic Krylov-Bogolyubov-Mitropol'skii method (its first and second approximations) of nonlinear mechanics. We show that an increase in the delay in the nonlinear feedback amplifier results in a decrease in the frequency of self-induced oscillations, which transforms the string generator into a low-frequency device. __________ Translated from Neliniini Kolyvannya, Vol. 11, No. 2, pp. 168–190, April–June, 2008.  相似文献   

14.
Spatiotemporal periodic patterns, including phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or anti-phase oscillations are investigated in a ring of bidirectionally coupled oscillators with neutral delay feedback. It is confirmed that neutral feedback makes Hopf bifurcation occur in a larger domain of parameters. We calculate the normal forms near Hopf bifurcation, D N equivariant Hopf bifurcation and double-Hopf bifurcation in this neutral equation by using the method of multiple scales. Theoretically, the appearance of the in-phase, anti-phase and phase-locked oscillations that we observed in the simulation about a ring of delay coupled Hindmarsh–Rose neurons with neutral feedback is explained.  相似文献   

15.
陆子  何毅翔  张岚斌  代胡亮  王琳 《力学学报》2022,54(11):3147-3156
流致振动现象广泛存在于机械、航空、土木和石油等重要工程领域, 为防止工程结构因流致振动行为而造成疲劳破坏, 有必要对稳定性、动力学响应及其振动控制做深入研究. 本文提出了一种由弹簧和质量块构成的非线性吸能器(nonlinear targeted energy transfer, NTET), 研究了该非线性吸能器对弹性支承圆柱体涡激振动的被动控制影响机制. 基于能量法推导了圆柱体涡激振动非线性被动控制的耦合动力学方程, 通过设计非线性弹簧?质量块构型的NTET, 进一步开展了涡激振动控制的实验研究, 并与理论预测结果进行了较好的对比, 获得提升涡激振动控制效果的最佳参数值. 研究发现, NTET的质量、弹簧刚度以及弹簧预应力等参数会对涡激振动控制效果产生显著的影响. 本文研究结果表明, 该耦合系统中圆柱体和NTET均表现出周期性的稳态振动响应, NTET质量的改变会显著影响系统的耦合频率. 在无预应力状态下, NTET质量越大、刚度越小时, 有更好的减振效果. 当弹簧预应力逐渐增大时, NTET的非线性刚度逐渐变弱, 会降低涡激振动控制性能. 参数分析表明: 随着涡激振动控制性能的提升, 圆柱体的振幅逐渐较小, NTET的振幅逐渐增大, 能量传递效率逐渐提高. 研究结果可为工程中涡激振动控制策略的高效设计提供有用的理论支撑和实验数据.   相似文献   

16.
We study the dynamic interactions between traveling waves propagating in a linear lattice and a lightweight, essentially nonlinear and damped local attachment. Correct to leading order, we reduce the dynamics to a strongly nonlinear damped oscillator forced by two harmonic terms. One of the excitation frequencies is characteristic of the traveling wave that impedes to the attachment, whereas the other accounts for local lattice dynamics. These two frequencies are energy-independent; a third energy-dependent frequency is present in the problem, characterizing the nonlinear oscillation of the attachment when forced by the traveling wave. We study this three-frequency strongly nonlinear problem through slow-fast partitions of the dynamics and resort to action-angle coordinates and Melnikov analysis. For damping below a critical threshold, we prove the existence of relaxation oscillations of the attachment; these oscillations are associated with enhanced targeted energy transfer from the traveling wave to the attachment. Moreover, in the limit of weak or no damping, we prove the existence of subharmonic oscillations of arbitrarily large periods, and of chaotic motions. The analytical results are supported by numerical simulations of the reduced order model.  相似文献   

17.
In this paper, we study the propagation of high-intensity acoustic noise in free space and in waveguide systems. A mathematical model generalizing the Burgers equation is used. It describes the nonlinear wave evolution inside tubes of variable cross-section, as well as in ray tubes, if the geometric approximation for heterogeneous media is used. The generalized equation transforms to the common Burgers equation with a dissipative parameter, known as the “Reynolds–Goldberg number”. In our model, this number depends on the distance travelled by the wave. With a zero “viscous” dissipative term, the model reduces to the Riemann (or Hopf) equation. Its solution presents the field by an implicit function. The spectral form of this solution makes it possible to derive explicit expressions for both dynamic and statistical characteristics of intense waves. The use of a spectral approach allowed us to describe the high-intensity noise in media with zero and finite viscosity. Applicability conditions of these solutions are defined. Since the phase matching is fulfilled for any triplet of interacting spectral components, there is an avalanche-like increase in the number of harmonics and the formation of shocks. The relationship between these discontinuities and other singularities and the high-frequency asymptotic of intense noise is studied. The possibility is shown to enhance nonlinear effects in waveguide systems during the evolution of noise.  相似文献   

18.
谐波齿轮减速器是一种新型的传动装置, 因其具有诸多的优点, 因而得到了广泛应用. 谐波齿轮减速器涉及不同振荡尺度之间的耦合作用, 这通常会诱发复杂的快慢振荡, 严重影响了谐波齿轮系统的正常工作. 本文考虑涉及扭转刚度非线性因素的谐波齿轮系统, 旨在研究系统的快慢动力学, 揭示新型的快慢振荡机制. 首先, 构建了非线性扭转刚度下的谐波齿轮系统的快慢动力学模型. 然后, 通过改变扭转刚度系数, 得到了系统从常规振荡向快慢振荡的转迁过程. 接着, 简要地论述了有关快慢系统的基础理论. 在此基础上, 采用快慢分析法研究了快子系统的动力学特性, 揭示了快慢振荡的产生机制. 研究表明, 当系统参数改变时, 快子系统的平衡点曲线并未发生失稳或分岔; 然而, 在某一点附近, 平衡点曲线能够产生急剧量变, 其特征是平衡点在局部小范围内可以在正坐标值与负坐标值之间快速转迁. 在此基础上, 揭示了一种诱发快慢振荡的新型动力学机制, 比较了这种诱发机制与其他相关机制之间的区别. 本文丰富了系统通向快慢振荡的路径, 为实际谐波齿轮传动系统中的快慢振荡机理与控制研究提供参考.   相似文献   

19.
IntroductionNowadays,withthedevelopmentofeconomy ,therequirementoftheenergyresourceismuchbiggerthaninthepasttime .Generatorsaredevelopingtowardsthelargescale.Thehydroelectric_generatorinSanxiahydroelectricstationbelongstolimitedcapacitygeneratingunit,an…  相似文献   

20.
This paper presents a generalized form of the method of full approximation.By usingthe concept of asymptotic linearization and making the coordinate transformationsincluding the nonlinear functionals of dependent variables,the original nonlinear problemsare linearized and their higher-order solutions are given in terms of the first-termasymptotic solutions and corresponding transformations.The analysis of a model equationand some problems of weakly nonlinear oscillations and waves with the generalized methodshows that it is effective and straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号