首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
本文用浊度滴定(UV-Vis)、透射电镜(TEM)和激光光散射(QELS)等方法对Al3+离子与卵磷脂(EYPC)囊泡之间的相互作用及其这种相互作用对溶液中磷脂微结构的影响进行了研究。结果表明,一定量的Al3+离子使EYPC多层囊泡转变为线团状聚集体;Al3+与牛磺胆酸钠(TC)的协同作用可以破坏EYPC的多层囊泡结构,促进相转变,形成混合胶束。  相似文献   

2.
在HF和MP2水平用全电子(AE)和相对论有效芯势(RECP)方法研究了Ⅰa、Ⅰb、Ⅱa和Ⅱb族金属离子与β D 核糖(RI)的相互作用. 结果表明, RECP能可靠地用于重金属离子;二价金属离子(M2+)比一价金属离子(M+)更易使β D 核糖(RI)变形;二价金属离子络合物(RI M2+)比一价金属离子络合物(RI M+)稳定. 电荷布居分析的结果支持上述结论.  相似文献   

3.
在HF和MP2水平用全电子(E)和相对论有效芯势(ECP)方法研究了Ⅰa、Ⅰb、Ⅱa和Ⅱb族金属离子与β-D-核糖(RI)的相互作用.结果表明,RECP能可靠地用于重金属离子;二价金属离子(2+)比一价金属离子(+)更易使β-D-核糖(RI)变形;二价金属离子络合物(I-M2+)比一价金属离子络合物(I-M+)稳定.电荷布居分析的结果支持上述结论.  相似文献   

4.
在HF和MP2水平用全电子(AE)和相对论有效芯势(RECP)方法研究了Ⅰa、Ⅰb、Ⅱa和Ⅱb族金属离子与β-D-核糖(RI)的相互作用.结果表明,RECP能可靠地用于重金属离子;二价金属离子(M2+)比一价金属离子(M+)更易使β-D-核糖(RI)变形;二价金属离子络合物(RI-M2+)比一价金属离子络合物(RI-M+)稳定.电荷布居分析的结果支持上述结论.  相似文献   

5.
利用浊度和电镜观察等方法研究了水解的苯乙烯-马来酸酐共聚物(SMA)和十二烷基三乙基溴化铵(DEAB)混合体系中多价金属离子诱导的囊泡聚集现象. 提出了关于多价金属离子诱导囊泡聚集的机理.  相似文献   

6.
囊泡形成和破坏的动力学   总被引:1,自引:0,他引:1  
周文婷  徐晓明  蓝琴  韩国彬 《化学学报》2007,65(20):2279-2284
利用停流装置研究了十二烷基硫酸钠(SDS)和十二烷基三甲基溴化铵(DTAB)复配形成囊泡的过程和囊泡破坏过程的动力学性质, 并结合动态光散射技术和电子透射显微镜探索囊泡形成和囊泡破坏过程的机理. 动态光散射和电子透射显微镜的研究结果表明囊泡的形成过程主要包括四个阶段: 混合胶团→柔性的长棒状聚集体→“非平衡囊泡”→平衡囊泡, 而与其对应的粒度分散度则呈现“单分散性→多分散性”的周期性变化规律. 此外, 动力学结果表明囊泡形成过程很长, 但其活化能不大, 这意味着囊泡形成过程的控制步骤可能不是活化能控制. 而相对于囊泡的形成, 囊泡的破坏过程是十分迅速的.  相似文献   

7.
二价金属离子对鲑鱼精DNA热稳定性的影响   总被引:2,自引:0,他引:2  
二价金属离子与 DNA之间的作用在 DNA复制、转录以及新陈代谢过程中起到重要的作用 ,因此越来越受到关注 [1,2 ] .L uck等 [3 ]指出 ,碱土金属与 DNA分子的磷酸基团发生作用使 DNA的热稳定性升高 ,而二价过渡金属离子主要是与碱基作用而使 DNA热稳定性降低 . Eichhorn等 [4 ] 用变温紫外光谱法研究了在 DNA磷酸根离子的浓度较小 (0~ 4.0 )时 ,多种二价金属离子对小牛胸腺 DNA热稳定性的影响 ,发现 Mg2 + 及过渡金属离子 Mn2 + ,Co2 + 和 Ni2 + 都有利于 DNA的稳定 .最近 ,Duguid等 [5]用差示扫描量热法 (DSC)研究了在 c(M2 +…  相似文献   

8.
两性/阴离子表面活性剂形成具有耐盐性能的蠕虫状胶束   总被引:1,自引:0,他引:1  
利用流变学方法研究了两性表面活性剂十四烷基磺基甜菜碱(TDAPS)和阴离子表面活性剂十二烷基硫酸钠(SDS)混合体系中蠕虫状胶束的耐盐性能, 分析了二价金属离子对蠕虫状胶束微观结构的影响. 结果表明, 在加入MgCl2和CaCl2使Mg2+和Ca2+总浓度达到0~1900 mg/L的情况下, TDAPS/SDS体系中形成的蠕虫状胶束的粘弹性能和耐剪切能力不仅没有损失而且增强. 对静态流变和动态流变结果进一步分析表明体系中同时存在两种可区分尺寸的蠕虫状胶束. 加入二价金属离子, 体系的微观结构发生了由小尺寸蠕虫状胶束向大尺寸蠕虫状胶束转变, 同时, 大尺寸蠕虫状胶束线性增长并发生枝化. 两性表面活性剂头基上的正电荷中心减小了蠕虫状胶束的反离子结合程度, 抑制了线性生长到枝化生长的过程, 使体系表现出优异的耐盐性能.  相似文献   

9.
利用两亲性线性-超支化多臂共聚物聚乙二醇-聚乙烯亚胺-聚谷氨酸苄酯(PEG-PEI-PBLG)在水溶液中自组装为阳离子囊泡. 利用透射电镜、动态光散射、静态光散射和zeta电位仪对囊泡结构进行了表征. PEG-PEI-PBLG囊泡具有双分子层结构, 壁厚5~10 nm, 直径在100 nm左右. 由于PEI在水溶液中的质子化作用, 囊泡表面携带有正电荷, 其表面电势为+25。2 mV, 因此PEG-PEI-PBLG阳离子囊泡具有担载负电性蛋白的能力.  相似文献   

10.
杨娥  周立新  章永凡 《结构化学》2002,21(1):103-109
在B3LYP、HF和MP2水平上运用全电子从头算(AE)和相对论有效实势(RECP)及6-311+G**和LanL2DZ基组计算Ⅰa、Ⅰb、Ⅱa和Ⅱb族金属离子与磷酸二甲酯阴离子(DMP-)的相互作用。 RECP用于除Li+、Be2+外所有的金属离子。 对Na+、K+、Cu+、Mg2+、Ca2+、Zn2+用AE和RECP 2种方法处理。 结果表明:RECP能可靠地用于重金属离子络合物; 二价金属离子络合物(DMP-—M2+)比一价金属离子络合物 (DMP-—M+)稳定;二价金属离子(M2+)可能比一价金属离子(M+)更易使多核苷酸折叠。  相似文献   

11.
The interaction of bile salt/phospholipid mixed micelles with an intestinal mucin has been investigated to provide the foundation for the transport of ingested fat and poorly water-soluble drugs through the intestinal mucous layer. Egg phosphatidylcholine (PC) was equilibrated with sodium taurocholate (TC) to generate several series of solutions, which had different intermicellar concentrations of TC. Within each series, each solution had the same IMC and thereby micelle sizes, but varied with respect to micelle concentration. These solutions were combined with isolated rat intestinal mucin, equilibrated, and then separated by centrifugation. The supernatant and mucin pellet were assayed for PC and TC, and the diffusion coefficient of PC was measured in the supernatant by PFG-SE NMR spectroscopy. For each series, four linear relationships were found; TC supernatant concentration plotted as a function of PC supernatant concentration; TC pellet concentration plotted as a function of PC pellet concentration; TC pellet concentration plotted as a function of TC supernatant concentration; and PC pellet concentration plotted as a function of PC supernatant concentration. Theoretical analysis of these results indicated that mucin excludes from 25 to 80% of the bile salt/phospholipid mixed micelles with greater exclusion observed with larger micelle size. There is preferential association of the taurocholate with intestinal mucin, when present in the mixed micelle region of the phase diagram. The association coupled with exclusion would allow mucin to modulate the concentration of bile salt at the epithelial surface.  相似文献   

12.
Assembling and chelating properties of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) towards divalent metal ions have been investigated in the gas phase by electrospray ionization mass spectrometry. A variety of positively charged monometallated and mixed metal aggregates are formed. Interestingly, several ions contain solvent (MeOH, H(2)O) molecules and constitute the most abundant AOT cationic aggregates not containing sodium. These species are the first example of solvated AOT-metal ion aggregates in the gas phase. By increasing the surfactant aggregation number, the abundance of solvated species becomes lower than that of unsolvated ones. Decompositions of ionic species have been studied by tandem mass spectrometry, and their stability has been determined through energy resolved mass spectrometry. In contrast with positively charged AOT-alkaline metal ion aggregates, whose decompositions are dominated by the loss of individual surfactant molecules, AOTNa-divalent ion aggregates mainly dissociate through the cleavage of the AOT H(2)C-O bond followed by further intramolecular fragmentations. This finding, that is consistent with an enhanced chelation of divalent ions with AOT(-) head groups, has been taken as an indication that such aggregates are characterized by a reverse micelle-like organization with a ionic core formed by the metal cations interacting with the negatively charged surfactant polar heads, whereas the surfactant alkyl chains point outside.  相似文献   

13.
The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases.  相似文献   

14.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

15.
Photophysical properties of two widely used antibiotic fluoroquinolone drugs, namely Norfloxacin (NOR) and Ofloxacin (OFL) have been investigated in biomimicking environments formed by bile salts. Experimental results demonstrate that photophysical enhancement and fall of a particular prototropic species are sensitive to the excitation wavelength in bile salt aggregates. Excitation at shorter wavelengths reveals quenching of fluorescence of these fluoroquinolone with addition of sodium deoxycholate (NaDC), sodium taurocholate (NaTC) and sodium glycodeoxycholate (NaGDC). On the contrary, we observe a steady increase in the fluorescence intensity with a continuous redshift upon excitation at longer wavelength. The experimental results were rationalized in terms of the fact that, neutral and zwitterionic species of fluoroquinolone molecules in bile salt aggregates are selectively excited at shorter wavelength while the cationic form of fluoroquinolone molecules are excited at longer wavelength. The excess hydronium ions in the hydrophilic surface of bile salt aggregates convert the neutral species of NOR and OFL into cationic species causing an enhancement in the emission intensity. We found that NaGDC and NaTC because of the conjugate head group are more effective in converting the neutral species of fluoroquinolones into a cationic species than NaDC. The quenching order is in accordance with hydrophobicity indices of bile salt.  相似文献   

16.
We conducted a time-dependent study of cholesterol (Ch) nucleation to investigate the effect of calcium ions in the moderate supersaturated bile. In taurocholate/lecithin (TC/L) bile at a TC to L ratio of 5.1, the presence of calcium ions enhanced the nucleation rate of Ch. Contrarily, we observed the delayed nucleation of Ch after ~30 days in TC/L bile at a ratio of 2.0, regardless of the calcium ions. From the physical chemistry standpoint, the cholesterol activity (ChAT) is believed to be the driving force for Ch nucleation together with the sufficient nucleation sites. Hence, the micellar formation models along with the binding of TC monomers to calcium ions interpreted the time-dependent results. Furthermore, a quasielastic light–scattering technique detected the formation of micelles and vesicles. In conclusion, the presence of calcium ions in TC/L bile at a high ratio enhances the vesicle appearance for nucleation sites and the high ChAT values for fast nucleation rate of Ch. However, an increase in the L concentration (i.e., low ratio bile) plays a significant role in the prevention of Ch gallstone formation, compared to the decrease in calcium ion concentration.  相似文献   

17.
Our serial studies from 1970s on chemical composition, structure determination and formation mechanism of gallstones were reviewed. The chemical component investigation of brown-pigment gallstone demonstrated that it consists of macromolecules such as proteins, glyco-proteins, polysaccharides, bilirubin polymers and pigment polymers, and biomolecules such as cholesterol, bile salts, calcium salts of carbonate, phosphate, fatty acids and bilirubinate as well as various metal ions. The binding of metal ions with bile salts and bilirubin plays important roles in gallstone formation, i.e., calcium bilirubinate complex is the major constitute of brown-pigment gallstones, and copper bilirubinate complex is critical in the black color appearance of black-pigment gallstone. The cross section of many gallstones exhibits a concentric ring structure composed of various small particles with a fractal character. This is nonlinear phenomenon in gallstone formation. A typical model system of metal ions-deoxycholate (or cho  相似文献   

18.
The effect of divalent ions on hydraulic irreversible fouling of ultrafiltration membranes was studied. Not only the effect of removing divalent ions by pretreatment of raw water with ion exchange is quantitatively studied, but also the effects of different types of backwash water are considered. By replacing divalent ions with sodium in cation exchange, the amount of hydraulic irreversible fouling (remaining fouling after backwashing) is reduced by at least 60%. When adding either calcium or magnesium to water treated with cation exchange, a linear relation is found between the ion concentration and the irreversible fouling rate. The effects of calcium and magnesium are identical when the concentrations are expressed in mol/L. Removing divalent ions from the backwash water does not affect irreversible fouling, but when using MilliQ water as backwash water, irreversible fouling can (almost) completely be prevented.  相似文献   

19.
Vesicle aggregation induced by different environmental factors, including the addition of divalent metal ions, decrease of pH, and increase of temperature--was investigated through turbidity measurement, fluorescence measurement, and transmission electron microscope observation in aqueous solutions of hydrolyzed styrene-maleic anhydride copolymer (HSMA) mixed with dodecyltriethylammonium bromide (C(12)Et(3)). The vesicle aggregation can be explained by the dehydration of the vesicle surface through cations addition or temperature increase based on an analysis of the interaction between vesicles. Moreover, the steric repulsion was introduced to the system and the control of vesicle aggregation was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号