首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel lysine salen complex was successfully synthesized via a stepwise procedure and applied as a heterogeneous catalyst for styrene epoxidation. For comparison, several other transition metal (Mn, Fe, Co, and Cu) lysine salen complexes were also synthesized. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX). Data obtained by FT-IR and Raman spectroscopy indicated the formation of C=N bonds and the complexation of these bonds with metal ions. SEM analysis revealed that the complexation of metal ions with the C=N involves the change in surface morphology of samples. In addition, atomic percent composition of samples was obtained from EDX spectra, which was the complementary evidence for the formation of complexes. Results of catalytic measurements showed that a high conversion of styrene (91.51%) and selectivity to styrene oxide (91.99%) could be achieved over the nickel lysine salen complex with tert-butyl hydroperoxide as the oxidant. When the catalyst was reused the conversion of styrene decreased but the selectivity to styrene oxide still remained high.  相似文献   

2.
A novel Mo(VI) tetradentate Schiff base complex based on two pyrrole‐imine donors was anchored covalently on Fe3O4 nanoparticles and characterized using physicochemical techniques. The catalytic epoxidation process was optimized in terms of the effects of solvent, reaction temperature, kind of oxidant and amount of oxidant and catalyst. Then the novel heterogeneous nanocatalyst was used for the efficient and selective catalytic epoxidation of internal alkenes (cyclohexene, cyclooctene, α‐pinene, indene and trans ‐1,2‐diphenylethene) and terminal alkenes (n ‐heptene, n ‐octene, n ‐dodecene and styrene) using tert ‐butyl hydroperoxide (70% in water) as oxidant in 1,2‐dichloroethane as solvent. The prepared nanocatalyst is very effective for the selective epoxidation of cis ‐cyclooctene with 100% conversion, 100% selectivity and turnover frequency of 1098 h−1 in just 30 min. The magnetic nanocatalyst was easily recovered using an external magnetic field and was used subsequently at least six times without significant decrease in conversion.  相似文献   

3.
杨刚  陈星  王小丽  邢卫红  徐南平 《催化学报》2013,34(7):1326-1332
制备了镍(II)席夫碱配合物官能化的MCM-41多相催化剂MCM-41-Ni.利用X射线粉末衍射、氮气物理吸附脱附、红外光谱、热重、电感耦合等离子体原子发射光谱、元素分析和透射电镜等方法对催化剂进行了表征.以氧气为氧化剂,MCM-41-Ni在催化环氧化苯乙烯的反应中表现出较高的催化活性;苯乙烯的转化率为95.2%,环氧苯乙烷的选择性为66.7%.系统地研究了反应温度、催化剂用量、溶剂以及反应时间对反应性能的影响.催化剂经过4次循环仍然表现出较好的稳定性和催化活性.  相似文献   

4.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

5.
Ni (II) schiff base complex was synthesized by the reaction of nickel acetate tetrahydrate with N, N’-Bis(2,4-di-hydroxybenzaldehyde)-1,2-cyclohexanediamine and supported on modified grapheme oxide nano-sheets using 3-chloropropyltrimethoxysilane as a reactive surface modifier. The heterogeneous nano-catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms and atomic absorption spectroscopy. This catalyst was used for the epoxidation of alkenes using tert-butyl hydroperoxide as oxidant, giving excellent conversions and selectivity. The catalyst showed great reusability and selectivity without significant loss of activity in the epoxidation reactions.  相似文献   

6.
A phenoxybutane‐based Schiff base complex of cis‐dioxo‐Mo(VI) was supported on paramagnetic nanoparticles and characterized using powder X‐ray diffraction, infrared, diffuse reflectance and atomic absorption spectroscopies, scanning and transmission electron microscopies and vibrating sample magnetometry. The separable nanocatalyst was tested for the selective epoxidation of cyclohexene, cyclooctene, styrene, indene, α‐pinene, 1‐octene, 1‐heptene, 1‐dodecene and trans‐stilbene using tert‐butyl hydroperoxide (80% in di‐tert‐butyl peroxide–water, 3:2) as oxidant in chloroform. The catalyst was efficient for oxidation of cyclooctene with 100% selectivity for epoxidation with 98% conversion in 10 min. We were able to separate magnetically the nanocatalyst using an external magnetic field and used the catalyst at least six successive times without significant decrease in conversion. The turnover frequency of the catalyst was remarkable (2556 h?1 for cyclooctene). The proposed nanomagnetic catalyst has advantages in terms of catalytic activity, selectivity, catalytic reaction time and reusability by easy separation.  相似文献   

7.
Chloromethylated polystyrene beads cross-linked with 6.5 % divinylbenzene were functionalized with 2-(2′-pyridyl) benzimidazole (PBIMH) and on subsequent treatment with Cu(OAc)2 in methanol gave a polymer-supported diacetatobis(2-pyridylbenzimidazole)copper(II) complex [PS-(PBIM)2Cu(II)], which was characterized by physicochemical techniques. The supported complex showed excellent catalytic activity toward the oxidation of industrially important organic compounds such as phenol, benzyl alcohol, cyclohexanol, styrene, and ethylbenzene. An effective catalytic protocol was developed by varying reaction parameters such as the catalyst and substrate concentrations, reaction time, temperature, and substrate-to-oxidant ratio to obtain maximum selectivity with high yields of products. Possible reaction mechanisms were worked out. The catalyst could be recycled five times without any metal leaching or much loss in activity. This catalyst is truly heterogeneous and allows for easy work up, as well as recyclability and excellent product yields under mild conditions.  相似文献   

8.
A new heterogeneous Schiff base copper(II) complex was prepared by reacting amino‐polystyrene with salicylaldehyde followed by complexation with cupric chloride. The structure of this immobilized complex has been established on the basis of scanning electron microscope (SEM), thermogravimetric analysis (TGA), elemental analysis employing atomic absorption spectroscopy (AAS), and spectrometric methods like diffuse reflectance spectra of solid (DRS) and fourier transform infrared spectroscopy (FTIR). Catalytic activity of this polymer anchored Cu(II) complex was tested by studying the oxidation of cyclohexene, styrene, and benzyl alcohol in the presence of tert‐ butylhydroperoxide as oxidant. Several parameters such as solvent, oxidant, reaction time, reaction temperature, amount of catalyst, and substrates oxidant ratio were varied to optimize the reaction condition. Under optimized reaction conditions, cyclohexene gave a maximum of 74% conversion with three major products 2‐cyclohexene‐1‐one, cyclohexene epoxide, and 2‐cyclohexene‐1‐ol. The conversions of styrene and benzylalcohol proceed with 53% and 77%, respectively. Styrene gives styrene epoxide as the major product while benzylalcohol gives benzaldehyde as the major product. The catalytic results reveal that polymer anchored copper(II) Schiff base complex can be recycled more than five times without much loss in the catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The Mn-hydrazone Schiff base has been prepared, characterized, and encapsulated into NaY to prepare a new heterogeneous catalyst. Elemental analysis, UV-Vis, infrared spectroscopic analysis, diffuse reflectance spectroscopy, thermal analysis, small angle X-ray diffraction, and N2 sorption indicate the presence of Mn-hydrazone Schiff base within the nanocavity pores of zeolite-Y. The catalysts showed excellent catalytic efficiency in epoxidation with various olefinic compounds including cyclooctene, using tert-BuOOH as oxidant. Cyclooctene showed high conversion (97%) as well as epoxide selectivity (89%) with tert-BuOOH. Moreover, the encapsulated complex showed good recoverability without significant loss of activity and selectivity within successive runs.  相似文献   

10.
以NaOH固化法制备的壳聚糖/凹凸棒土(CS/ATP)复合树脂为载体,以水杨醛和天冬氨酸合成的席夫碱为配体,分别合成Co、Mn、Cu、Fe和Ni的席夫碱金属配合物及其负载型席夫碱金属配合物,并通过FT-IR对其进行结构表征,且以苯乙烯为底物,分子氧为氧源,分别考察了各种催化剂对苯乙烯的环氧化性能。 实验结果表明,在小分子席夫碱金属配体中,Co-Schiff碱催化性能较好。 将Co-Schiff碱负载到CS/ATP复合树脂中,综合考察了Co-Schiff碱-CS/ATP的用量、温度、时间对苯乙烯催化环氧化性能的影响,结果表明,反应温度为80 ℃,反应时间为8 h,苯乙烯的转化率达93.1%。  相似文献   

11.
This paper details the enantioselective performance of styrene/divinylbenzene-supported Mn- and Cr-based salen complexes for the epoxidation of olefins and the ring-opening of epoxides to azido-silyl ethers. The Mn catalyst produced the epoxides of 1,2-dihydronaphthalene, styrene, and cis-β-methylstyrene with enantiomeric excesses (ee's) of 46, 9, and 79%, respectively. For the Cr catalyst, the enantioselective ring-opening of epoxyhexane, propylene oxide, and cyclohexene oxide with trimethylsilyl azide proceeded with ee's of 34, 36, and 6%, respectively. Upon recycle of these heterogeneous catalysts, a degradation process was noted for the Mn-catalyst under the conditions for epoxidation that resulted in oxidation and decomposition of the ligand. This process also affects the homogeneous catalyst, thereby limiting the recyclability of both the homogeneous Mn catalyst and its heterogenized version for this reaction. The Cr-catalyzed reaction to ring-open epoxides employs milder conditions and allowed reuse of the heterogeneous catalyst without loss of activity or enantioselectivity through three runs with epoxyhexane. During reaction, the leaching of Cr from the heterogeneous catalyst is less than 0.1%, suggesting possible reuse of the catalyst over hundreds of cycles before reloading the polymer-supported salen ligand with metal would be necessary. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3888–3898, 1999  相似文献   

12.
A series of hybrid mesoporous SBA-15 materials containing four iron(III) Schiff base complexes of the type [FeL x (NO3)] (x = 4–7, L = N,N′-bis(salicylidene)ethylenediamine, N,N′-bis(salicylidene)diethylenetriamine, N,N′-bis(salicylidene)o-phenylenediamine, N,N′-bis(3-nitro-salicylidene)ethylenediamine) was synthesized by a post-grafting route. The XRD, N2 adsorption/desorption and TEM measurements confirmed the structural integrity of the mesoporous hosts, and the spectroscopic characterization techniques (FT-IR, UV–vis spectroscopy, 1H NMR) confirmed the ligands and the successful anchoring of iron(III) Schiff base complexes over the modified mesoporous support. Quantification of the supported ligand and metal was carried out by TG/DSC and ICP-AES techniques. The catalyst FeL7-SBA resulting from N,N′-bis(3-nitro-salicylidene)ethylenediamine) ligand was considerably active for the aerobic epoxidation of styrene, in which the highest conversion of styrene reached 83.6%, and the selectivity to styrene oxide was 83.0%. Moreover, it was also found that the catalytic activity increases with the decrease in the electron-donating ability of the Schiff bases, and the selectivity varies according to the types of substituents in the ligands.  相似文献   

13.
Graphene oxide (GO) supported transition metal complexes are apprised as sturdy and everlasting heterogeneous catalysts. GO surface was functionalized with 3-triethoxysilylpropylamine (TSPA) and this amino functionalized GO (A-f-GO) nanocomposite with vanadyl Schiff base complex (VO-f-GO) was prepared and to give credence of its potentiality, it was chosen for the selective epoxidation of styrene using environmentally benign 30% H2O2 to styrene oxide (SO). To evade the detrimental exposure of “inborn” water, a selective high boiling and potent hygroscopic solvent, ethylene glycol was chosen to make this transformation productively successful. With the assistance of theoretical studies, we have probed the effect of H2O2 on to structural properties, binding mechanism and electronic properties of the catalyst and substrate. Adsorption energy (Ead), energy band gap (Eg) and HOMO-LUMO were also calculated. Based on DFT calculations, resonance Raman and UV/Vis studies, we confirmed the formation of metal-peroxo species and propose the plausible catalytic pathway. The influence of the diverse experimental parameters, like substrate to oxidant mole ratio, catalyst concentration, type of solvents, solvent amount, time, temperature and oxidant were tested. A clear relationship was found between different reaction parameters like solvent amount, oxidant, catalyst concentration and temperature etc. and product distribution. This heterogeneous catalyst yielded styrene oxide as nearly the sole product (selectivity = 98.7%) with a conversion value of 99.2% in the oxidation of styrene with hydrogen peroxide in ethylene glycol.  相似文献   

14.
A thiosemicarbazone Cu(II) complex anchored to a polystyrene framework has been synthesized and characterized by analytical and spectroscopic techniques. The complex was found to be a highly active catalyst for the oxidation of various organic substrates including alkenes and alcohols using H2O2 as oxidant. The reaction conditions were optimized with respect to temperature, solvent, oxidant, catalyst amount, and substrate to peroxide ratio. The heterogeneous catalyst was reused five times without significant loss of activity. A comparison between the catalytic activities of this polymer-supported Cu(II) complex and its homogeneous analogue was carried out.  相似文献   

15.
Both monomeric Schiff base complexes and 1D helical polymeric complexes of Cu(II) and Ni(II) were synthesized and characterized by physicochemical and spectroscopic methods. X-ray single-crystal studies were made on [K2(CuL)2Ni(CN)4]n·0.5nEt2O and [K2(NiL)2Ni(CN)4]n·0.5nEt2O. The polymers were screened as heterogeneous catalysts for styrene epoxidation. For comparison, the catalytic properties of the homogeneous and heterogeneous catalysts were also examined under identical reaction conditions, and the influence of various solvents and oxidants was studied. The polymeric catalysts showed better activities in chloroform when using tert-butyl hydroperoxide as oxidant, suggesting that heterogenization increased the activity of the catalyst under this condition.  相似文献   

16.
研究了磷钨杂多酸盐反应控制相转移催化H2O2直接氧化苯乙烯制环氧苯乙烷的反应,考察了溶剂、H2O2用量、催化剂用量、反应温度、时间、苯乙烯浓度等因素对反应的影响。 获得的适宜的反应条件为:乙酸乙酯为溶剂,n(苯乙烯)∶n(H2O2)∶n(催化剂)=300∶300∶1,反应温度60 ℃,反应时间6 h,反应液中苯乙烯质量分数为10%。 在该条件下,苯乙烯的转化率为85.5%,环氧苯乙烷的选择性为84.9%。 催化剂可过滤回收,循环使用2次后的活性无明显下降。  相似文献   

17.
A new magnetically recoverable heterogeneous molybdenum catalyst was developed by means of a click chemistry approach. First, silica‐coated magnetite nanoparticles were functionalized using a bidentate ligand via thiol–ene click reaction of mercaptopropyl‐modified magnetite nanoparticles with acrylic acid. Then, a molybdenum complex was covalently supported on the surface of the clicked silica‐coated magnetite nanoparticles. The prepared catalyst was characterized using Fourier transform infrared and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, vibrating sample magnetometry and transmission electron microscopy. The catalytic performance of the prepared heterogeneous catalyst was investigated in the epoxidation of olefins with tert‐butyl hydroperoxide as oxidant. This catalyst could be reused for five runs without significant loss of activity and selectivity.  相似文献   

18.
首先制备了2种磺酸功能化的有机聚苯乙烯/无机磷酸氢锆非均相催化剂,运用傅里叶红外光谱(FT-IR)、N2吸附-脱附测试、X射线衍射(XRD)、扫描电子显微镜(SEM)等测试技术对催化剂进行了表征,提出了催化剂可能的模型。其次,考察了非均相催化剂催化合成环氧化大豆油的催化性能。结果表明:以叔丁基过氧化氢(TBHP)为氧化剂,固体催化剂对大豆油的环氧反应具有良好的催化性能,相比于催化剂1(磺酸化低聚苯乙烯基膦酸-磷酸氢锆),在相同的条件下,催化剂2(磺酸化聚(苯乙烯-苯乙烯膦酸)-磷酸氢锆)表现出更高的催化活性(产率:58.6%vs 53.3%),这主要归因于催化剂2拥有更大的比表面积、孔容以及孔径,为底物和催化剂的接触提供足够的催化场所。催化剂2重复使用7次后,催化活性未见明显降低。第8次反应结束后,将其置于2 mol·L-1稀盐酸中静置过夜后,在进行第9和10次循环时,催化活性又得以恢复。  相似文献   

19.

The catalytic activity of an oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, γ-Fe2O3@[VO(salenac-OH)] in which salenac-OH?=?[9-(2′,4′-dihydroxyphenyl)-5,8-diaza-4-methylnona-2,4,8-trienato](-2), was explored in the oxidation of hydrocarbons with tert-butyl hydroperoxide (TBHP, 70% aqueous solution) as oxidant. High catalytic activity and selectivity were demonstrated by this magnetic nanocatalyst in alkane hydroxylation and alkene epoxidation, and the corresponding products were obtained with good to excellent yields in acetonitrile at 50 °C. Reasonable catalytic activity was presented by this supported catalyst in the epoxidation of linear alkenes under optimal reaction conditions. In addition, alkylbenzene derivatives and cycloalkanes can be oxidized to their corresponding alcohols and ketones with good yields in this catalytic system. It is possible to magnetically separate the γ-Fe2O3@[VO(salenac-OH)] catalyst and reuse it four times without losing the activity significantly. Moreover, the catalyst structure and morphology do not change after recovery, as indicated by comparing scanning electron microscopy (SEM) image, Fourier transform infrared (FT-IR) and diffuse reflectance spectrum (DRS) of the recovered catalyst with those of the fresh catalyst.

  相似文献   

20.
A new epoxidation catalyst has been prepared by grafting a molybdenum(VI)–oxodiperoxo complex containing an oxazine ligand, [MoO(O2)2(phox)], on chloro‐functionalized Fe3O4 nanoparticles. The synthesized heterogeneous catalyst (MoO(O2)2(phox)/Fe3O4 was characterized using powder X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and inductively coupled plasma atomic emission spectroscopy. The immobilized complex gave high product yields and high selectivity for epoxide compared to the corresponding homogeneous one in the epoxidation of various olefins in the presence of tert ‐butyl hydroperoxide at 95°C without any co‐solvent. Also, the heterogeneous catalyst can be recycled without a noticeable change in activity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号