首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
理论分析了低温贮箱的热性能,计算并对比了低温贮箱各部分漏热情况。通过在静置状态下的蒸发率实验,测量了一定时间内的低温液体蒸发量,以此计算了液氮工质的蒸发率以及外部总漏热量,并与计算值进行了对比。通过制冷机降低贮箱内气相温度,结果表明,气枕压力及蒸发率随气相空间温度减小能够有效降低。  相似文献   

2.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

3.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

4.
以低温贮箱压力控制为目标,建立了热力学排气系统(TVS)和贮箱内流体流动及气液相变过程的数学模型。以18.09m~3低温贮箱在地面工况充注率75%、漏热量0.76W/m~2为例,计算了不同贮存工质(液氢、液氮、液氧)下贮箱自增压过程及开启TVS后对贮箱压力控制的效果。结果表明,相同漏热率下液氢贮箱的气枕升压速率远大于相同充注率下的液氮和液氧贮箱升压速率;TVS运行后三种工质贮箱压力均可有效地控制在165.5~172.4kPa范围内。对比了不同工质热力学排气系统的运行周期、运行时间及排气量等关键参数,同时还分析了贮箱内液体的温度变化规律。  相似文献   

5.
冷氦增压系统是低温液体推进系统的关键技术之一。利用仿真软件Sinda/Fluint,对氧箱冷氦增压系统的冷氦气瓶加注过程和系统增压过程进行了基于集总参数法的建模与计算分析。首先,对冷氦气瓶加注过程给出了最优加注流量,并分析了气瓶内温度压力达到稳定所需的时间、冷氦气瓶充气过程瓶内最高温度以及气瓶与周围液氧的传热;其次,针对冷氦增压系统,详细研究了两种气瓶布局条件下,贮箱增压过程中冷氦气瓶温度、压力随时间的变化,以及氧箱内气枕与液氧的温度、压力变化情况;最后,还对增压过程中的氦气流量、传热特性进行了研究。  相似文献   

6.
通过实验研究了顶部受热低温贮罐中低温流体温度分层、压力变化情况,并进行了理论计算。研究结果显示,在静置过程中贮罐在顶部漏热时气相空间温度分层较为显著,且由于顶部的持续漏热,气相空间的温度梯度一直存在;液相的温度梯度曲线与误差函数曲线一致;贮罐的压力可分为两部分:初始的快速增压和之后的稳定增压阶段;随着静置时间的增加,液体温度分层更加明显,贮罐气枕压力逐渐变大。该研究为确定贮罐安全贮存增压压力和贮存时间提供技术依据,为工程实际应用提供支撑。  相似文献   

7.
火箭低温液体推进剂增压系统数学模型   总被引:7,自引:0,他引:7  
针对火箭低温液体推进剂增压系统建立了数学模型,目的是为获得满足工程精度要求的飞行期间贮箱内气相空间的压力、温度以及贮箱壁壁温的变化规律.数学模型被证明有较好的计算精度,且模型能适应不同种类的增压气体,甚至混合型增压气体,能适应加注后停放期间和飞行期间的计算.  相似文献   

8.
为了揭示低温推进剂贮箱的增压规律和热分层特性,在以液氮为贮存介质的低温流体高效贮存平台上,进行了不同充注率下的贮箱自增压及氦气增压实验。得到充注率分别为35%,50%和65%时的贮箱增压速率分别为7.54 kPa·h~(-1),13.02 kPa·h~(-1)和28.26 kPa·h~(-1).获得了达到相同压力水平时各自充注率对应的温度分布,分析了不同充注率时贮箱温度梯度的变化规律。最后使用常温氦气作为增压气体,将贮箱充注率为50%的贮箱分别增压到180 kPa,380 kPa和580kPa,分析了氦气充注过程及达到不同压力水平时贮箱内温度分布变化规律.  相似文献   

9.
数值模拟了大型液氧贮箱停放阶段液氧与气枕区的热分层特征,根据模拟结果分析了液氧贮箱热分层厚度演化规律。结果表明:液氧的温度分层厚度随时间增长先增加后保持不变。外界环境温度的变化会在一定程度上影响着贮箱侧壁处的温度分布,但是对于其温度分层厚度并没有显著的影响。气枕区热分层现象比液氧区更加明显。  相似文献   

10.
针对初始过热充注的液氧储箱内温度分层现象,通过数值模拟对储箱在停放过程中低温工质温度场的变化特征进行研究,同时分析了初始过热度以及漏热形式对温度发展规律的影响。研究表明:常压停放过程中,受到液体初始过热度的影响,储箱内液氧温度呈现从汽液界面至底部逐渐升高的趋势,与实验结果相一致;液体初始过热度越大,相界面蒸发速率越快,同一时刻对应气枕区的温度越低;增加气枕区绝热性能相对于底端绝热更有助于储箱内状态尽快稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号