首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

2.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

3.
针对初始过热充注的液氧储箱内温度分层现象,通过数值模拟对储箱在停放过程中低温工质温度场的变化特征进行研究,同时分析了初始过热度以及漏热形式对温度发展规律的影响。研究表明:常压停放过程中,受到液体初始过热度的影响,储箱内液氧温度呈现从汽液界面至底部逐渐升高的趋势,与实验结果相一致;液体初始过热度越大,相界面蒸发速率越快,同一时刻对应气枕区的温度越低;增加气枕区绝热性能相对于底端绝热更有助于储箱内状态尽快稳定。  相似文献   

4.
以低温贮箱压力控制为目标,建立了热力学排气系统(TVS)和贮箱内流体流动及气液相变过程的数学模型。以18.09m~3低温贮箱在地面工况充注率75%、漏热量0.76W/m~2为例,计算了不同贮存工质(液氢、液氮、液氧)下贮箱自增压过程及开启TVS后对贮箱压力控制的效果。结果表明,相同漏热率下液氢贮箱的气枕升压速率远大于相同充注率下的液氮和液氧贮箱升压速率;TVS运行后三种工质贮箱压力均可有效地控制在165.5~172.4kPa范围内。对比了不同工质热力学排气系统的运行周期、运行时间及排气量等关键参数,同时还分析了贮箱内液体的温度变化规律。  相似文献   

5.
由于外部漏热的影响,静置时低温贮箱内的气枕压力会逐渐升高,压力升高相应地会改变贮箱内气相空间的温度分布。文中对低温液氮贮箱进行了静置增压过程实验,结果表明:增压所耗时间随气枕压力升高而增大,气相空间垂直方向各温度在实验压力范围内也相应升高;低温贮箱在不同的气枕压力下进行了放气过程实验,并对泄压过程中气体流量随气枕压力的变化进行了分析。  相似文献   

6.
建立了液体火箭发动机的液氧贮箱与底部预冷回路的数值计算耦合模型,模拟了地面停放过程中贮箱与底部预冷回路的三维非稳态两相流动与传热过程,分析了自然循环预冷条件下液氧贮箱和底部预冷回路中的三维物理场分布及随时间变化规律。结果表明:随着停放时间的增加,液氧的蒸发量增加,停放中后期贮箱内的热传递基本趋于稳定。回流管内的气化导致回流口处的温度一直呈现波动。  相似文献   

7.
理论分析了低温贮箱的热性能,计算并对比了低温贮箱各部分漏热情况。通过在静置状态下的蒸发率实验,测量了一定时间内的低温液体蒸发量,以此计算了液氮工质的蒸发率以及外部总漏热量,并与计算值进行了对比。通过制冷机降低贮箱内气相温度,结果表明,气枕压力及蒸发率随气相空间温度减小能够有效降低。  相似文献   

8.
冷氦增压系统是低温液体推进系统的关键技术之一。利用仿真软件Sinda/Fluint,对氧箱冷氦增压系统的冷氦气瓶加注过程和系统增压过程进行了基于集总参数法的建模与计算分析。首先,对冷氦气瓶加注过程给出了最优加注流量,并分析了气瓶内温度压力达到稳定所需的时间、冷氦气瓶充气过程瓶内最高温度以及气瓶与周围液氧的传热;其次,针对冷氦增压系统,详细研究了两种气瓶布局条件下,贮箱增压过程中冷氦气瓶温度、压力随时间的变化,以及氧箱内气枕与液氧的温度、压力变化情况;最后,还对增压过程中的氦气流量、传热特性进行了研究。  相似文献   

9.
基于正交实验法对变密度多层绝热(VD-MLI)设计不同层密度组合方案,同时采用逐层传热分析模型进行漏热量计算。结果表明不同层密度组合的VD-MLI漏热量不同,VD-MLI最优层密度组合方案为低密度区8层/cm,中密度区14层/cm,高密度区20层/cm。在最优层密度组合基础上,确定了不同热端温度条件下,液氮、液氧、液态甲烷VD-MLI满足漏热量要求的最小厚度。热端温度165K,液氮最小厚度9mm,液氧8mm,液态甲烷6mm;热端温度300K,液氮最小厚度39mm,液氧38mm,液态甲烷36mm;热端温度400K,液氮最小厚度94mm,液氧93mm,液态甲烷92mm。  相似文献   

10.
基于热响应法的航天器推进剂质量测量热模型   总被引:1,自引:0,他引:1  
本文以热响应法测量航天器微重力条件下贮箱推进剂剩余质量为背景,建立了航天器贮箱内外热环境耦合作用下的整体热分析模型,通过将航天器贮箱外部热环境视为第二类浮动热边界条件,实现贮箱气液两相分布下的热分析解耦计算,为热响应法提供精确的温度场计算方法。采用该方法,针对热响应法测量微重力条件下某航天器贮箱内部推进剂质量所需的温度场分布,通过数值仿真获得了空间在轨阶段,热响应法加热工作时贮箱内外热环境整体耦合下的温度场分布,并依据特定检测点的瞬态温度变化,反演得到了剩余推进剂的质量。研究发现采用热响应法测量推进剂质量时,贮箱温度场不仅受贮箱内部加热影响,在轨外部热环境也会明显影响贮箱壁面温度的均匀性。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号