首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large family of dysprosium–scandium (Dy‐Sc) mixed‐metal nitride clusterfullerenes (MMNCFs), DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) have been successfully synthesized and isolated. Among these, the C70 and C82‐based MMNCFs are two new cages that have never been isolated for MMNCFs. Synthesis of DyxSc3?xN@C2n was accomplished by the “selective organic solid” route using guanidinium thiocyanate as the nitrogen source, and their isolation was fulfilled by recycling HPLC. UV/Vis‐NIR spectroscopic study indicates that almost all DyxSc3?xN@C2n MMNCFs are kinetically stable fullerenes with optical band gaps beyond 1 eV. This feature is distinctly different to their counterparts Dy3N@C2n (78≤2n≤88), whose for optical band‐gaps are below 1 eV for relatively large cages such as C84 and C86. An FTIR spectroscopic study in combination with DFT calculations enables reasonable assignments of the cage isomeric structures of all isolated DyxSc3?xN@C2n (x=1, 2, 2n=68, 70, 76–86) MMNCFs. The carbon cage size distribution of DyxSc3?xN@C2n (2n=68, 70, 76–86) is compared to the reported Dy3N@C2n (78≤2n≤8) homogeneous NCF and DyxSc3?xN@C2n (78≤2n≤88) MMNCF families, revealing that the medium‐sized Dy metal plays a crucial role on the expanded cage size distribution of MMNCFs. As a result, DyxSc3?xN@C2n MMNCFs are the largest MMNCF family reported to date.  相似文献   

2.
Metallofullerenes of GdxHo3?xN@C80 and GdxLu3?xN@C80 encapsulating mixed‐metal nitride clusters were synthesized. Spectroscopic characterization of GdxHo3?xN@C80 and GdxLu3?xN@C80 was employed to reveal their structural and vibrational properties. The structural properties of these species were analyzed by using theoretical calculations. The studies of GdxHo3?xN@C80 and GdxLu3?xN@C80 laid the foundations for these species to be used as multifunctional molecules.  相似文献   

3.
To provide theoretical insight into the structures and properties of Sc3N@C80, which has been isolated in high yield and purity as a new stable endohedral metallofullerene, density functional calculations are carried out for the Sc3?nLanN@C80 (n=0–3) series. Because of electron transfer from Sc3N to C80, the electronic structure of Sc3N@C80 is formally described as (Sc3N)6+C$_{80}^{6-}$. The encapsulated Sc3N cluster takes a planar structure with long Sc–Sc distances and is highly stabilized inside the Ih cage of C80, which rotates rapidly. As the number of La atoms increases, the Sc3?nLanN cluster is forced to maintain a pyramidal structure in Sc3?nLanN@C80. In addition, the C80 cage takes an open‐shell electronic structure due to an increase in the number of electrons transferring from Sc3?nLanN. These make the endohedral structure less stable and more reactive. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1353–1358, 2001  相似文献   

4.
Geometrical structures of three investigated molecules Sc3N@C80, Sc3N@C80‐Fc, and C60‐Fc were optimized by density functional theory (DFT) at the B3LYP/6‐31G* level. Then the time‐dependent DFT was employed to investigate the excited states of these molecules. After exohedral functionalization by ferrocene (Fc‐) group as the electron donor or replacing C60 with Sc3N@C80 as the electron acceptor, the wavelengths of the first one‐photon absorption peak and the strongest two‐photon absorption (2PA) and three‐photon absorption (3PA) peaks shift red. The corresponding cross sections of Sc3N@C80‐Fc in the 2PA and 3PA processes increase as compared with those of Sc3N@C80, which originate from the contributions of charge transfers from Fc‐ group to C80 cage and simultaneously the transfers from the C80 cage to the encapsulated Sc3N cluster. When compared with C60‐Fc, the 2PA and 3PA cross sections of Sc3N@C80‐Fc decrease, which may result from the more negative charge surface of C80 cage in Sc3N@C80‐Fc molecule which blocks the charge transfers from Fc‐ moiety to the C80 cage in the excitation processes by compared with C60‐Fc. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

5.
Geometrical structures of the investigated endohedral metallofullerenes Sc3N@C2n (2n = 68, 70, 78, and 80) were optimized at the B3LYP/6‐31G* level. The analyses of electronic structures display that the contribution of fullerene cage to the lowest unoccupied molecular orbital decreases as the cage size increases. Based on the optimized structures, the time‐dependent density functional theory combined with the sum‐over‐states method was used to investigate their nonlinear optical properties. Calculated third‐order polarizabilities γ and two‐photon absorption (TPA) cross‐section δ do not present the monotone variation with the size of fullerene cage, with largest γ of 0.48 × 10?34 esu for Sc3N@C78 in static state, and largest δ of 12.374 GM for Sc3N@C70 in the wavelength of 902.5 nm. However, the obtained TPA resonant peaks shift red with the size of fullerene cage. By analyzing the electronic origin of the third‐order optical properties, it is found that the charge transfers from the fullerene cage to the encapsulated Sc3N cluster make important contributions to the studied properties. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
Crystal orbital Hamilton population (COHP) bonding analysis has predicted that ScPd3B0.5 is the least stable compound of the entire series Sc2Ir6?xPdxB. Here, we report a systematic study of Sc2Ir6?xPdxB (x=3, 5 and 6) by means of 11B nuclear magnetic resonance (NMR), Knight shift (K) and nuclear spin‐lattice relaxation rate (1/T1). NMR results combined with theoretical band structure calculations provide a measure of s‐ and non‐s‐character Fermi‐level density of states. We present direct evidence that the enhanced s‐state character of the Fermi level density of states (DOS) in ScPd3B0.5 reduces the strength of the B 2p and Pd 4d hybridized states across the entire Sc2Ir6?xPdxB series. This hybridization strength relates to the opening of a deep pseudogap in the density of states of Sc2IrPd5B and the chemical bonding instability of ScPd3B0.5. This study is an experimental realization of a chemical fine‐tuning of the electronic properties in intermetallic perovskites.  相似文献   

7.
Diethylenetriamine‐N,N,N′,N′′,N′′‐pentaacetic acid (DTPA) and 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three 45Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc=0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc=1.75 ppm) and 0.01 M [Sc(ox)4]5? (ox2?=oxalato) in 1 M aq. K2C2O4 (δSc=8.31 ppm). In solution, [Sc(dtpa)]2? complex (δSc=83 ppm, ?ν=770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)]? anion (δSc=100 ppm, ?ν=4300 Hz). The solid‐state structure of K8[Sc2(ox)7] ? 13 H2O contains two [Sc(ox)3]3? units bridged by twice “side‐on” coordinated oxalate anion with Sc3+ ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)]2? and [Sc(dota)]? in [(Hguanidine)]2[Sc(dtpa)] ? 3 H2O and K[Sc(dota)][H6dota]Cl2 ? 4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)]? unit exhibits twisted square‐antiprismatic arrangement without an axial ligand (TSA′ isomer) and [Sc(dota)]? and (H6dota)2+ units are bridged by a K+ cation. A surprisingly high value of the last DOTA dissociation constant (pKa=12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and 45Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc3+ ion is much faster than with trivalent lanthanides. Proton‐assisted decomplexation of the [Sc(dota)]? complex (τ1/2=45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)]? complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes.  相似文献   

8.
The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.  相似文献   

9.
Metal–cage and intracluster bonding was studied in detail by quantum theory of atoms in molecules (QTAIM) for the four major classes of endohedral metallofullerenes (EMFs), including monometallofullerenes Ca@C72, La@C72, M@C82 (M=Ca, Sc, Y, La), dimetallofullerenes Sc2@C76, Y2@C82, Y2@C79N, La2@C78, La2@C80, metal nitride clusterfullerenes Sc3N@C2n (2n=68, 70, 78, 80), Y3N@C2n (2n=78, 80, 82, 84, 86, 88), La3N@C2n (2n=88, 92, 96), metal carbide clusterfullerenes Sc2C2@C68, Sc2C2@C82, Sc2C2@C84, Ti2C2@C78, Y2C2@C82, Sc3C2@C80, as well as Sc3CH@C80 and Sc4Ox@C80 (x=2, 3), that is, 42 EMF molecules and ions in total. Analysis of the delocalization indices and bond critical point (BCP) indicators such as Gbcp/ρbcp, Hbcp/ρbcp, and |Vbcp|/Gbcp, revealed that all types of bonding in EMFs exhibit a high degree of covalency, and the ionic model is reasonable only for the Ca‐based EMFs. Metal–metal bonds with negative values of the electron‐density Laplacian were found in Y2@C82, Y2@C79N, Sc4O2@C80, and anionic forms of La2@C80. A delocalized nature of the metal–cage bonding results in a topological instability of the electron density in EMFs with an unpredictable number of metal–cage bond paths and large elipticity values.  相似文献   

10.
The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes Ih‐Sc3N@C80 and Ih‐Y3N@C80 connected to an electron‐donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3‐dipolar cycloaddition reactions of azomethine ylides and Bingel–Hirsch‐type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y3N@C80‐based dyads and the [5,6] regioisomers in the case of Sc3N@C80‐based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]‐Y3N@C80‐based dyads, whereas the [5,6]‐Sc3N@C80‐based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl–Sc3N@C80‐fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron‐transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C60 dyad.  相似文献   

11.
An extensive study of the redox properties of metal nitride endohedral fullerenes (MNEFs) based on DFT computational calculations has been performed. The electronic structure of the singly oxidized and reduced MNEFs has been thoroughly analyzed and the first anodic and cathodic potentials, as well as the electrochemical gaps, have been predicted for a large number of M3N@C2n systems (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, and 96). In particular, calculations that include thermal and entropic effects correctly predict the different anodic behavior of the two isomers (Ih and D5h) of Sc3N@C80, which is the basis for their electrochemical separation. Important differences were found in the electronic structure of reduced M3N@C80 when M=Sc or when M is a more electropositive metal, such as Y or Gd. Moreover, the changes in the electrochemical gaps within the Gd3N@C2n series (2n=80, 84, and 88) have been rationalized and the use of Y‐based computational models to study the Gd‐based systems has been justified. The redox properties of the largest MNEFs characterized so far, La3N@C2n (2n=92 and 96), were also correctly predicted. Finally, the quality of these predictions and their usefulness in distinguishing the carbon cages for MNEFs with unknown structures is discussed.  相似文献   

12.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

13.
A porphyrin–flavin‐linked dyad and its zinc and palladium complexes (MPor?Fl: 2 ?M, M=2 H, Zn, and Pd) were newly synthesized and the X‐ray crystal structure of 2 ?Pd was determined. The photodynamics of 2 ?M were examined by femto‐ and nanosecond laser flash photolysis measurements. Photoinduced electron transfer (ET) in 2 ?H2 occurred from the singlet excited state of the porphyrin moiety (H2Por) to the flavin (Fl) moiety to produce the singlet charge‐separated (CS) state 1(H2Por.+?Fl.?), which decayed through back ET (BET) to form 3[H2Por]*?Fl with rate constants of 1.2×1010 and 1.2×109 s?1, respectively. Similarly, photoinduced ET in 2 ?Pd afforded the singlet CS state, which decayed through BET to form 3[PdPor]*?Fl with rate constants of 2.1×1011 and 6.0×1010 s?1, respectively. The rate constant of photoinduced ET and BET of 2 ?M were related to the ET and BET driving forces by using the Marcus theory of ET. One and two Sc3+ ions bind to the flavin moiety to form the Fl?Sc3+ and Fl?(Sc3+)2 complexes with binding constants of K1=2.2×105 M ?1 and K2=1.8×103 M ?1, respectively. Other metal ions, such as Y3+, Zn2+, and Mg2+, form only 1:1 complexes with flavin. In contrast to 2 ?M and the 1:1 complexes with metal ions, which afforded the short‐lived singlet CS state, photoinduced ET in 2 ?Pd???Sc3+ complexes afforded the triplet CS state (3[PdPor.+?Fl.??(Sc3+)2]), which exhibited a remarkably long lifetime of τ=110 ms (kBET=9.1 s?1).  相似文献   

14.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

15.
Two novel graphene‐fullerene hybrid structures, containing C60 and endohedral Sc3N@C80 bound to graphene, instead of the formerly used graphene oxide, were efficiently synthesized via a reductive activation/exfoliation approach starting from pristine graphite. The structures of these multifunctional hybrid systems were unambiguously characterized by statistical Raman spectroscopy, TG‐MS, TG‐GC‐MS, and LD‐TOF mass spectroscopy, confirming the covalent bonding of the respective C60/Sc3N@C80 moieties to the pristine graphene. Furthermore, assisted by temperature‐dependent Raman spectroscopy studies the corresponding defunctionalization processes were also investigated. Finally, the formation of a carbon allotrope hybrid material on the basis of C60/Sc3N@C80 moieties coupled to graphene could be visualized by HRTEM.  相似文献   

16.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   

17.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

18.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

19.
A systematic density functional theory investigation has been carried out to explore the possible structures of Sc2C80 at the BMK/6‐31G(d) level. The results clearly show that Sc2@C80Ih, Sc2@C80D5h, and Sc2C2@C78C2v can be identified as three isomers of Sc2C80 metallofullerene with the lowest energy. Frontier molecular orbital analysis indicates that the two Sc2@C80 isomers have a charge state as (Sc3+)2@C806?and the Sc2C2@C78 has a charge state of (Sc3+)2C22?@C784?. Moreover, the metal‐cage covalent interactions have been studied to reveal the dynamics of endohedral moiety. The vertical electron affinity, vertical ionization potential, infrared spectra and 13C nuclear magnetic resonance spectra have been also computed to further disclose the molecular structures and properties.  相似文献   

20.
The development of water‐mediated proton‐conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal–organic framework (MOF) [La3 L 4(H2O)6]Cl ? x H2O ( 1 , L 2?=4‐(4H‐1,2,4‐triazol‐4‐yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.9 nm in diameter. It forms a water‐stable, porous structure that can be reversibly hydrated and dehydrated. The proton‐conducting properties of 1 were investigated by impedance spectroscopy. Magic‐angle spinning (MAS) and pulse field gradient (PFG) NMR spectroscopies confirm the dynamic nature of the incorporated water molecules. The diffusivities, determined by PFG NMR and IR microscopy, were found to be close to that of liquid water. This porous framework accomplishes the challenges of water stability and proton conduction even at 110 °C. The conductivity in 1 is proposed to occur by the vehicle mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号