首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes Ih‐Sc3N@C80 and Ih‐Y3N@C80 connected to an electron‐donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3‐dipolar cycloaddition reactions of azomethine ylides and Bingel–Hirsch‐type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y3N@C80‐based dyads and the [5,6] regioisomers in the case of Sc3N@C80‐based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]‐Y3N@C80‐based dyads, whereas the [5,6]‐Sc3N@C80‐based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl–Sc3N@C80‐fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron‐transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C60 dyad.  相似文献   

2.
Geometrical structures of three investigated molecules Sc3N@C80, Sc3N@C80‐Fc, and C60‐Fc were optimized by density functional theory (DFT) at the B3LYP/6‐31G* level. Then the time‐dependent DFT was employed to investigate the excited states of these molecules. After exohedral functionalization by ferrocene (Fc‐) group as the electron donor or replacing C60 with Sc3N@C80 as the electron acceptor, the wavelengths of the first one‐photon absorption peak and the strongest two‐photon absorption (2PA) and three‐photon absorption (3PA) peaks shift red. The corresponding cross sections of Sc3N@C80‐Fc in the 2PA and 3PA processes increase as compared with those of Sc3N@C80, which originate from the contributions of charge transfers from Fc‐ group to C80 cage and simultaneously the transfers from the C80 cage to the encapsulated Sc3N cluster. When compared with C60‐Fc, the 2PA and 3PA cross sections of Sc3N@C80‐Fc decrease, which may result from the more negative charge surface of C80 cage in Sc3N@C80‐Fc molecule which blocks the charge transfers from Fc‐ moiety to the C80 cage in the excitation processes by compared with C60‐Fc. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

3.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc3N@Ih‐C80 and its D5h counterpart Sc3N@D5h‐C80, and the (bio)chemically relevant lutetium‐ and gadolinium‐based M3N@Ih/D5h‐C80 EMFs (M=Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels–Alder cycloaddition of s‐cis‐1,3‐butadiene on all the different bonds of the Ih‐C80 and D5h‐C80 cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc3N@C80. Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D 5h ‐b , which is the most similar to the unique [5,6] bond type in the icosahedral cage, I h ‐a , is the most reactive bond in M3N@D5h‐C80 regardless of M. Sc3N@C80 and Lu3N@C80 give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M=Gd, as previously found in similar metallofullerenes. Calculations also show that the D5h isomer is more reactive from the kinetic point of view than the Ih one in all cases which is in good agreement with experiments.  相似文献   

4.
The reaction mechanism and regioselectivity of the Diels–Alder reactions of C68 and Sc3N@C68, which violate the isolated pentagon rule, were studied with density functional theory calculations. For C68, the [5,5] bond is the most favored thermodynamically, whereas the cycloaddition on the [5,6] bond has the lowest activation energy. Upon encapsulation of the metallic cluster, the exohedral reactivity of Sc3N@C68 is reduced remarkably owing to charge transfer from the cluster to the fullerene cage. The [5,5] bond becomes the most reactive site thermodynamically and kinetically. The bonds around the pentagon adjacency show the highest chemical reactivity, which demonstrates the importance of pentagon adjacency. Furthermore, the viability of Diels–Alder cycloadditions of several dienes and Sc3N@C68 was examined theoretically. o‐Quinodimethane is predicted to react with Sc3N@C68 easily, which implies the possibility of using Diels–Alder cycloaddition to functionalize Sc3N@C68.  相似文献   

5.
The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels–Alder cycloaddition between s‐cis‐1,3‐butadiene and practically all X@Ih‐C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow Ih‐C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of Ih‐C80‐based EMFs.  相似文献   

6.
Closely positioned donor–acceptor pairs facilitate electron‐ and energy‐transfer events, relevant to light energy conversion. Here, a triad system TPACor‐C60 , possessing a free‐base corrole as central unit that linked the energy donor triphenylamine ( TPA ) at the meso position and an electron acceptor fullerene (C60) at the β‐pyrrole position was newly synthesized, as were the component dyads TPA‐Cor and Cor‐C60 . Spectroscopic, electrochemical, and DFT studies confirmed the molecular integrity and existence of a moderate level of intramolecular interactions between the components. Steady‐state fluorescence studies showed efficient energy transfer from 1 TPA* to the corrole and subsequent electron transfer from 1corrole* to fullerene. Further studies involving femtosecond and nanosecond laser flash photolysis confirmed electron transfer to be the quenching mechanism of corrole emission, in which the electron‐transfer products, the corrole radical cation ( Cor?+ in Cor‐C60 and TPA‐Cor?+ in TPACor‐C60 ) and fullerene radical anion (C60??), could be spectrally characterized. Owing to the close proximity of the donor and acceptor entities in the dyad and triad, the rate of charge separation, kCS, was found to be about 1011 s?1, suggesting the occurrence of an ultrafast charge‐separation process. Interestingly, although an order of magnitude slower than kCS, the rate of charge recombination, kCR, was also found to be rapid (kCR≈1010 s?1), and both processes followed the solvent polarity trend DMF>benzonitrile>THF>toluene. The charge‐separated species relaxed directly to the ground state in polar solvents while in toluene, formation of 3corrole* was observed, thus implying that the energy of the charge‐separated state in a nonpolar solvent is higher than the energy of 3corrole* being about 1.52 eV. That is, ultrafast formation of a high‐energy charge‐separated state in toluene has been achieved in these closely spaced corrole–fullerene donor–acceptor conjugates.  相似文献   

7.
To provide theoretical insight into the structures and properties of Sc3N@C80, which has been isolated in high yield and purity as a new stable endohedral metallofullerene, density functional calculations are carried out for the Sc3?nLanN@C80 (n=0–3) series. Because of electron transfer from Sc3N to C80, the electronic structure of Sc3N@C80 is formally described as (Sc3N)6+C$_{80}^{6-}$. The encapsulated Sc3N cluster takes a planar structure with long Sc–Sc distances and is highly stabilized inside the Ih cage of C80, which rotates rapidly. As the number of La atoms increases, the Sc3?nLanN cluster is forced to maintain a pyramidal structure in Sc3?nLanN@C80. In addition, the C80 cage takes an open‐shell electronic structure due to an increase in the number of electrons transferring from Sc3?nLanN. These make the endohedral structure less stable and more reactive. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1353–1358, 2001  相似文献   

8.
The synthesis, isolation and spectroscopic characterization of holmium‐based mixed metal nitride clusterfullerenes HoxSc3?xN@C80 (x=1, 2) are reported. Two isomers of HoxSc3?xN@C80 (x=1, 2) were synthesized by the reactive gas atmosphere method and isolated by multistep recycling HPLC. The isomeric structures of HoxSc3?xN@C80 (x=1, 2) were characterized by laser‐desorption time‐of‐flight (LD‐TOF) mass spectrometry and UV/Vis/NIR, FTIR and Raman spectroscopy. A comparative study of MxSc3?xN@C80 (M=Gd, Dy, Lu, Ho) demonstrates the dependence of their electronic and vibrational properties on the encaged metal. Despite the distinct perturbation induced by 4f10 electrons, we report the first paramagnetic 13C NMR study on HoxSc3?xN@C80 (I; x=1, 2) and confirm Ih‐symmetric cage structure. A 45Sc NMR study on HoSc2N@C80 (I, II) revealed a temperature‐dependent chemical shift in the temperature range of 268–308 K.  相似文献   

9.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

10.
Geometrical structures of the investigated endohedral metallofullerenes Sc3N@C2n (2n = 68, 70, 78, and 80) were optimized at the B3LYP/6‐31G* level. The analyses of electronic structures display that the contribution of fullerene cage to the lowest unoccupied molecular orbital decreases as the cage size increases. Based on the optimized structures, the time‐dependent density functional theory combined with the sum‐over‐states method was used to investigate their nonlinear optical properties. Calculated third‐order polarizabilities γ and two‐photon absorption (TPA) cross‐section δ do not present the monotone variation with the size of fullerene cage, with largest γ of 0.48 × 10?34 esu for Sc3N@C78 in static state, and largest δ of 12.374 GM for Sc3N@C70 in the wavelength of 902.5 nm. However, the obtained TPA resonant peaks shift red with the size of fullerene cage. By analyzing the electronic origin of the third‐order optical properties, it is found that the charge transfers from the fullerene cage to the encapsulated Sc3N cluster make important contributions to the studied properties. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
Bingel–Hirsch derivatives of the trimetallic nitride template endohedral metallofullerenes (TNT‐EMFs) Sc3N@Ih‐C80 and Lu3N@Ih‐C80 were prepared by reacting these compounds with 2‐bromodiethyl malonate, 2‐bromo‐1,3‐dipyrrolidin‐1‐ylpropane‐1,3‐dionate bromide, and 9‐bromo fluorene. The mono‐adducts were isolated and their 1H NMR spectra showed that the addition occurred with high regioselectivity at the [6,6] bonds of the Ih‐C80 fullerene cage. Electrochemical analysis showed that the reductive electrochemistry behavior of these derivatives is irreversible at a scan rate of 100 mV s?1, which is comparable to the behavior of the pristine fullerene species. The first reduction potential of each derivative is either cathodically or anodically shifted by a different value, depending on the attached addend. Bis‐adducts containing EtOOC‐C‐COOEt and HC‐COOEt addends were isolated by HPLC and in the case of Sc3N@Ih‐C80 the first reduction potential exhibits a larger shift towards negative potentials when compared to the mono‐adduct. This observation is important for designing acceptor materials for the construction of bulk heterojunction (BHJ) organic solar cells, since the polyfunctionalization not only increases the solubility of the fullerene species but also offers a promising approach for bringing the LUMO energy levels closer for the donor and the acceptor materials.  相似文献   

12.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

13.
Metal–cage and intracluster bonding was studied in detail by quantum theory of atoms in molecules (QTAIM) for the four major classes of endohedral metallofullerenes (EMFs), including monometallofullerenes Ca@C72, La@C72, M@C82 (M=Ca, Sc, Y, La), dimetallofullerenes Sc2@C76, Y2@C82, Y2@C79N, La2@C78, La2@C80, metal nitride clusterfullerenes Sc3N@C2n (2n=68, 70, 78, 80), Y3N@C2n (2n=78, 80, 82, 84, 86, 88), La3N@C2n (2n=88, 92, 96), metal carbide clusterfullerenes Sc2C2@C68, Sc2C2@C82, Sc2C2@C84, Ti2C2@C78, Y2C2@C82, Sc3C2@C80, as well as Sc3CH@C80 and Sc4Ox@C80 (x=2, 3), that is, 42 EMF molecules and ions in total. Analysis of the delocalization indices and bond critical point (BCP) indicators such as Gbcp/ρbcp, Hbcp/ρbcp, and |Vbcp|/Gbcp, revealed that all types of bonding in EMFs exhibit a high degree of covalency, and the ionic model is reasonable only for the Ca‐based EMFs. Metal–metal bonds with negative values of the electron‐density Laplacian were found in Y2@C82, Y2@C79N, Sc4O2@C80, and anionic forms of La2@C80. A delocalized nature of the metal–cage bonding results in a topological instability of the electron density in EMFs with an unpredictable number of metal–cage bond paths and large elipticity values.  相似文献   

14.
Two novel graphene‐fullerene hybrid structures, containing C60 and endohedral Sc3N@C80 bound to graphene, instead of the formerly used graphene oxide, were efficiently synthesized via a reductive activation/exfoliation approach starting from pristine graphite. The structures of these multifunctional hybrid systems were unambiguously characterized by statistical Raman spectroscopy, TG‐MS, TG‐GC‐MS, and LD‐TOF mass spectroscopy, confirming the covalent bonding of the respective C60/Sc3N@C80 moieties to the pristine graphene. Furthermore, assisted by temperature‐dependent Raman spectroscopy studies the corresponding defunctionalization processes were also investigated. Finally, the formation of a carbon allotrope hybrid material on the basis of C60/Sc3N@C80 moieties coupled to graphene could be visualized by HRTEM.  相似文献   

15.
《化学:亚洲杂志》2017,12(12):1391-1399
Photochemical carbosilylation of Sc3N@Ih ‐C80 with silirane 1 afforded two corresponding [5,6]‐adducts, 2 and 3 , and a [6,6]‐adduct, 4 . The structural and electronic properties of these products were characterized by means of spectroscopic, electrochemical, and theoretical methods. The structure of 2 was disclosed by means of single‐crystal X‐ray crystallographic analysis. Thermal isomerization of 3 to 2 was observed, whereas that of 2 to 3 proceeded less efficiently at 100 °C. Upon heating under the same conditions, adduct 4 underwent facile decomposition to afford Sc3N@Ih ‐C80, or isomerized into small amounts of 2 and 3 . The relative stabilities of 2 , 3 , and 4 were rationalized through the results of theoretical calculations. In contrast, adducts 2 , 3 , and 4 were stable under the photolytic conditions employed for carbosilylation. The photochemical functionalization of Sc3N@Ih ‐C80 represents a convenient synthetic method to obtain thermally labile fullerene‐based products.  相似文献   

16.
An electron‐deficient copper(III) corrole was utilized for the construction of donor–acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump–probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge‐separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron‐deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 1010 s?1 and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.  相似文献   

17.
The reactions of novel S‐heterocyclic carbenes (SHCs), which were prepared by the cycloaddition of disilenes and digermenes to CS2, with C60 and Sc3N@Ih‐C80 afforded the corresponding methano‐bridged fullerenes. The [6,6]‐closed and [6,6]‐open structures were characterized for the SHC adducts of C60 and Sc3N@Ih‐C80, respectively. These derivatives exhibited relatively low oxidation potentials, indicative of the electron‐donating effects of the SHC addends. The electronic properties of the SHC derivatives were clarified by the density functional theory calculations.  相似文献   

18.
We present a first-principles study on the geometric, vibrational and electronic properties of a novel Y-based non-scandium mixed-metal nitride clusterfullerene (TiY2N@C80). Theoretical results indicate that the fundamental electronic properties of TiY2N@C80 are similar to that of TiSc2N@C80, but dramatically different from that of Sc3N@C80 and Y3N@C80 molecules. We find that the magnetism of TiY2N@C80 is quenched by carrier doping. The rotation energy barrier of the TiY2N cluster in C80 cage was obviously increased by exohedral chemical modification with pyrrolidine monoadduct.  相似文献   

19.
First principles calculations based on density functional theory (DFT) have been performed to design a new set of donor‐corrole‐bridge‐acceptor type systems based on the gallium corroles for dye‐sensitized solar cell applications. The design strategy for these systems is based on the benchmark studies done on the experimentally tested aluminum, gallium, and tin metallocorroles. Unfortunately, corrole analogues display poor light to current conversion efficiencies in spite of their desirable photophysical properties. Thus, improving the efficiency of corrole analogues has become a major challenge and ways to identify solutions to this is of outstanding fundamental importance. This study shows the lack of charge directionality toward anchoring group as plausible reason for the poor efficiencies of reported corrole systems, which enabled us to fine‐tune the electronic and optical properties of new D‐π‐A type systems, COR1‐COR4. The molecular geometries, electronic structure, and binding orientation of these systems on TiO2 surface were investigated using DFT, TD‐DFT, and PBC methods. When compared with the reported corroles, COR1‐COR4 have a smaller band gaps, red‐shifted absorption spectra with higher extinction coefficients (105 M?1 cm?1) and improved nonlinear optical properties. Importantly, results revealed that these dyes bind with two‐arm mode to TiO2 surface and the density of states of the dye@TiO2 elucidate strong coupling between the dyes and TiO2 surface. We anticipate that the unique photophysical properties of these sensitizers will trigger the experimental efforts to yield a new generation of sensitizers based on corrole macrocyle. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light‐emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron‐deficient compound, 5,6‐dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron‐accepting unit to develop a sufficiently strong donor‐acceptor (D?A) interaction for NIR emission. End‐capping with the electron‐donating triphenylamine (TPA) unit created an effective D?A?D type system, giving rise to an efficient NIR TADF emissive molecule (λem=750 nm) with a very small ΔEST of 0.06 eV. The electroluminescent device using this NIR TADF emitter exhibited an excellent performance with a high maximum radiance of 10020 mW Sr?1 m?2, a maximum EQE of 6.57% and a peak wavelength of 712 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号