首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports that structurally positively charged layered double hydroxides (LDHs) nanoparticles induce the vesicle formation in a mixture of a zwitterionic surfactant, lauryl sulfonate betaine (LSB), and an anionic surfactant, sodium dodecyl benzenesulfonate (SDBS). The existence of vesicles was demonstrated by negative‐staining (NS‐TEM) and freeze‐fracture (FF‐TEM) transmission electron microscopy and confocal laser scanning microscopy (CLSM). The size of vesicles increased with the increase of volume ratio (Q) of Mg3Al‐LDHs sol to the SDBS/LSB solution. A new composite of LDHs nanoparticles encapsulated in vesicles was formed. A possible mechanism of LDHs‐induced vesicle formation was suggested. The positive charged LDHs surface attracted negatively charged micelles or free amphiphilic molecules, which facilitated their aggregation into a bilayer membrane. The bilayer membranes could be closed to form vesicles that have LDHs particles encapsulated. It was also found that an adsorbed compound layer of LSB and SDBS micelles or molecules on the LDHs surface played a key role in the vesicle formation.  相似文献   

2.
A simplified model for particle formation in emulsion polymerization (comprising aqueous‐phase propagation to degrees of polymerization which may enter a pre‐existing particle and/or form new particles by homogeneous or micellar nucleation, coupled with the aqueous‐phase and intra‐particle kinetics of oligomeric radicals) is formulated to provide a model suitable for the simulation of systems containing large‐sized particles. The model is particularly useful to explore conditions for growth of large particles while avoiding secondary particle formation. Applied to the Interval II emulsion polymerization of styrene with persulfate initiator at 50°C, it is found that there is an effective maximum particle size that can be achieved if the formation of new particles is to be avoided. The parameter space of initiator concentration, particle number concentration and particle radius is mapped to show a “catastrophe” surface at the onset of new nucleation. Advanced visualization techniques are used to interpret the large number of simulations in the series, showing a maximum achievable particle diameter of around 5 μm.  相似文献   

3.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

4.
采用DSC方法研究了不同分子量聚乳酸在不同降温速率下的结晶过程,利用Ozawa方程和Kissinger方程研究了其非等温结晶动力学。结果表明,随着降温速率的增大和分子量增加,结晶峰向低温偏移,且峰形趋于平缓。求得分子量为2.6×104的聚乳酸的Ozawa指数m接近3,以异相成核的三维球晶生长为主,而分子量为14.3×104和19.2×104的聚乳酸的Ozawa指数m接近4,以均相成核的三维球晶生长为主,结晶活化能分别为-165.8kJ/mol、-82.1kJ/mol和-75.4kJ/mol。建立的"铰链"模型解释了不同分子量聚乳酸结晶活化能的显著差异,得到了聚乳酸分子量与结晶活化能的关系。  相似文献   

5.
A detailed mathematical model of the kinetics of styrene emulsion polymerization has been proposed. Its main features/assumptions are compartmentalization, micellar and homogeneous nucleation, particle formation by both initiator‐derived and desorbed radicals, dependence on the particle size of the rate coefficients, thermodynamic considerations, and aqueous phase kinetics. The model predicts that micellar nucleation dominates over homogeneous nucleation and that the evolution of the nucleation rate reaches a maximum, where desorbed radicals have an important contribution. Initiator‐derived radicals with only one monomeric unit have also a significant contribution on the rate of capture in particles. The results suggest that the correctness of the instantaneous termination approach depends not only on the size of the particle, but also on the type of entering radical (initiator‐derived or monomeric). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2201–2218, 2000  相似文献   

6.
A new approach is presented for the application of single‐molecule imaging to membrane receptors through the use of vesicles derived from cells expressing fluorescently labeled receptors. During the isolation of vesicles, receptors remain embedded in the membrane of the resultant vesicles, thus allowing these vesicles to serve as nanocontainers for single‐molecule measurements. Cell‐derived vesicles maintain the structural integrity of transmembrane receptors by keeping them in their physiological membrane. It was demonstrated that receptors isolated in these vesicles can be studied with solution‐based fluorescence correlation spectroscopy (FCS) and can be isolated on a solid substrate for single‐molecule studies. This technique was applied to determine the stoichiometry of α3β4 nicotinic receptors. The method provides the capability to extend single‐molecule studies to previously inaccessible classes of receptors.  相似文献   

7.
XIONG  Yanlin  PENG  Yin  LIU  Zhengyin 《中国化学》2009,27(11):2178-2182
Novel CdClOH sub‐nanocone crystals were successfully synthesized on a large scale by a facile solution‐based method using polymers as crystal growth modifiers. The crystals showed cone‐like morphology. Some factors affecting the morphology and size of the product, such as reaction temperature, concentrations of polyacrylamide (PAM), and pH value of the solution, were systematically studied. Experiments implied that polymer PAM played a key role in the formation of CdClOH sub‐nanocones. A possible formation mechanism of CdClOH sub‐nanocones was suggested based on nucleation‐etching process‐recrystallization in a mild aqueous solution. Furthermore, the as‐prepared CdClOH sub‐nanocones could be further transformed into CdS hollow sub‐nanocones by an anion‐exchange reaction.  相似文献   

8.
Photon‐induced near‐field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon‐polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time‐, orientation‐, and polarization‐dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.  相似文献   

9.
The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na‐rich aluminosilicate system. A detailed time‐series EMT‐type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core–shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels.  相似文献   

10.
For the first time, we have reported a halo (ring) formation occurred in the cross‐section of integrally skinned asymmetric membranes. These membranes were wet‐spun from solutions containing 30 and 33 wt % of 95/5 and 90/10 polyetherimide (PEI)/polybenzimidazole (PBI). Both Imaging X‐ray Photoelectron Spectroscopy (XPS) and Dynamic Mechanical Analyzer's (DMA) data suggest PEI and PBI form miscible blends the “halo” is not chemically different from the matrix and is most likely a physical phenomenon of unique pore morphology. In other words, uniform porosity was created in the middle of hollow fiber cross‐section area, which performs as a filter for light transmission. We found that the addition of PBI in PEI/DMAc solution not only depresses the macrovoid formation, but also changes the precipitation path: nucleation growth vs. spinodal decomposition. The formation of a halo within a membrane is possibly due to the fact that a uniform nucleation growth occurs in the ring region during the early stage of phase separation because of high solution viscosity and diffusion controlled solvent‐exchange process, and then separation grows in the mechanism of spinodal decomposition from small amplitude composition fluctuations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1575–1585, 1999  相似文献   

11.
The dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization of 4‐vinylpyridine in toluene in the presence of the polystyrene dithiobenzoate (PS‐CTA) macro‐RAFT agent with different chain length is discussed. The RAFT polymerization undergoes an initial slow homogeneous polymerization and a subsequent fast heterogeneous one. The RAFT polymerization rate is dependent on the PS‐CTA chain length, and short PS‐CTA generally leads to fast RAFT polymerization. The dispersion RAFT polymerization induces the self‐assembly of the in situ synthesized polystyrene‐b‐poly(4‐vinylpyridine) block copolymer into highly concentrated block copolymer nano‐objects. The PS‐CTA chain length exerts great influence on the particle nucleation and the size and morphology of the block copolymer nano‐objects. It is found, short PS‐CTA leads to fast particle nucleation and tends to produce large‐sized vesicles or large‐compound micelles, and long PS‐CTA leads to formation of small‐sized nanospheres. Comparison between the polymerization‐induced self‐assembly and self‐assembly of block copolymer in the block‐selective solvent is made, and the great difference between the two methods is demonstrated. The present study is anticipated to be useful to reveal the chain extension and the particle growth of block copolymer during the RAFT polymerization under dispersion condition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A squaraine dye functionalized with a bulky trialkoxy phenyl moiety through a flexible diamide linkage ( GA‐SQ ) capable of undergoing self‐assembly has been synthesized and fully characterized. Rapid cooling of a hot solution of GA‐SQ to 0 °C results in self‐assembled precipitates consisting of two types of nanostructures, rings and ill‐defined short fibers. The application of ultrasound modifies the conditions for the supersaturation‐mediated nucleation, generating only one kind of nuclei and prompting the formation of crystalline fibrous structures, inducing gelation of solvent molecules. The unique self‐assembling behavior of GA‐SQ under ultrasound stimulus has been investigated in detail by using absorption, emission, FT‐IR, XRD, SEM, AFM and TEM techniques. These studies reveal a nucleation growth mechanism of the self‐assembled material, an aspect rarely scrutinized in the area of sonication‐induced gelation. Furthermore, in order to probe the effects of nanoscale substrates on the sonication‐induced self‐assembly, a minuscule amount of single‐walled carbon nanotubes was added, which leads to acceleration of the self‐assembly through a heterogeneous nucleation process that ultimately affords a supramolecular gel with nanotape‐like morphology. This study demonstrates that self‐assembly of functional dyes can be judiciously manipulated by an external stimulus and can be further controlled by the addition of carbon nanotubes.  相似文献   

13.
The new fluctuation‐assisted mechanism for nucleation and crystallization in the isotactic polypropylene/poly(ethylene‐co‐octene) alloy has been studied. We found that the liquid–liquid phase separation (LLPS) had a dominant influence on the crystallization kinetics through the nucleation process. After LLPS, the nucleation of crystallization mainly occurred at the interface of the phase‐separated domains. It is because that the concentration fluctuations of the LLPS induced the motion of polymer chains and possibly some segmental alignment and/or orientation in the concentration gradient regions through interdiffusion, which could assist the formation of nuclei for crystallization. In other words, the usual nucleation energy barrier could be overcome (or at least partially) by the concentration fluctuation growth of LLPS in the unstable regions. This could be viewed as a new kind of heterogeneous nucleation and could be an addition to the regular nucleation and growth mechanism for crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 166–172, 2009  相似文献   

14.
We report on the investigations of the formation of the tethered lipid bilayer by vesicle deposition on amine-functionalized surfaces. The tethered bilayer was created by the deposition of egg-PC vesicles containing 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly-(ethyleneglycol)-N-hydroxysuccinimide as anchoring molecules on an amine-coated surface. This approach is an easy route for the formation of a biomimetic-supported membrane. A Doelhert experimental design was applied to determine the conditions leading to the formation of a continuous and defect-free tethered bilayer on different surfaces (gold and glass). Doehlert designs allow modeling of the experimental responses by second-order polynomial equations as a function of experimental factors. Four factors expected to influence bilayer formation were studied: the lipid concentration in the vesicle suspension, the mass percentage of anchoring molecules in the vesicles, the contact time between the vesicles and the surface, and the resting time of the membrane after buffer rinse. The optimization of the membrane preparation parameters was achieved by monitoring lipid assembly formation using surface plasmon resonance spectroscopy on gold and by fluorescence recovery after photobleaching on glass. Three characteristic responses were systematically measured: the bilayer thickness, the lipid diffusion coefficient, and the lipid mobile fraction. The simultaneous inspection of the three characteristics revealed that a restricted experimental domain leads to properties that are in accordance with a bilayer presence. The factors of this domain are a lipid concentration from 0.1 to 1 mg/mL, 4-8% of anchoring molecules in the vesicles, 1-4 h of contact time between vesicles and surface, and 21-24 h of resting time after buffer rinse. Under these conditions, a membrane having a lipid mass per surface between 545 +/- 5 and 590 +/- 10 ng/cm2, a diffusion coefficient of between 2.5 +/- 0.3 x 10(-8) and 3.60 +/- 0.5 x 10(-8) cm2/s, and a mobile fraction between 94 +/- 2 and 99 +/- 1% was formed. These findings were confirmed by atomic force microscopy observations, which showed the presence of a continuous and homogeneous bilayer in the determined experimental domain. This formation procedure presents many advantages; it provides an easily obtainable biomimetic membrane model for proteins studies and offers a versatile tethered bilayer because it can be adapted easily to various types of supports.  相似文献   

15.
Metallic zinc is a promising anode material for rechargeable Zn‐based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite‐free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn–Ni alloy (η‐ and γ‐phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well‐defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of NiII. Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite‐free zinc.  相似文献   

16.
The formation of a pore in a membrane requires a considerable rearrangement of the amphiphilic molecules about to form the bilayer edge surrounding the pore, and hence is accompanied by a steep increase of the free energy. Recent rupture and conductance experiments suggest that this reshuffling process is also responsible for a small energy barrier that stabilizes "prepores" with diameters of less than 1 nm, rendering both the opening and closing of pores an activated process. We use the potential of mean constraint force method to study this free energy profile, as a function of pore radius, in a coarse grained bilayer model. The calculations show that the free energy rises by (15-20) kT during pore opening, making it an extremely rare nucleation event. Although we do not observe a barrier to pore closure, the results do make the existence of such a barrier plausible. For larger pores we find a smooth transition to Litster's model, from which a line tension coefficient of about 3.7 x 10(-11) J m(-1) is deduced.  相似文献   

17.
A charge transfer (CT) mediated two‐component, multistimuli responsive supergelation involving a L ‐histidine‐appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene‐diimide (Asym‐NDI) derivative as an acceptor in a 2:1 mixture of H2O/MeOH was investigated. Asym‐NDI alone self‐assembled into pH‐responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular dichroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling “pearls‐on‐a‐string” from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.  相似文献   

18.
Particle formation and particle growth compete in the course of an emulsion polymerization reaction. Any variation in the rate of particle growth, therefore, will result in an opposite effect on the rate of particle formation. The particle formation in a semibatch emulsion polymerization of styrene under monomer‐starved conditions was studied. The semibatch emulsion polymerization reactions were started by the monomer being fed at a low rate to a reaction vessel containing deionized water, an emulsifier, and an initiator. The number of polymer particles increased with a decreasing monomer feed rate. A much larger number of particles (within 1–2 orders of magnitude) than that generally expected from a conventional batch emulsion polymerization was obtained. The results showed a higher dependence of the number of polymer particles on the emulsifier and initiator concentrations compared with that for a batch emulsion polymerization. The size distribution of the particles was characterized by a positive skewness due to the declining rate of the growth of particles during the nucleation stage. A routine for monomer partitioning among the polymer phase, the aqueous phase, and micelles was developed. The results showed that particle formation most likely occurred under monomer‐starved conditions. A small average radical number was obtained because of the formation of a large number of polymer particles, so the kinetics of the system could be explained by a zero–one system. The particle size distribution of the latexes broadened with time as a result of stochastic broadening associated with zero–one systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3940–3952, 2001  相似文献   

19.
Understanding the crystallization of organic molecules is a long‐standing challenge. Herein, a mechanistic study on the self‐assembly of crystalline arrays in aqueous solution is presented. The crystalline arrays are assembled from perylene diimide (PDI) amphiphiles bearing a chiral N‐acetyltyrosine side group connected to the PDI aromatic core. A kinetic study of the crystallization process was performed using circular dichroism spectroscopy combined with time‐resolved cryogenic transmission electron microscopy (cryo‐TEM) imaging of key points along the reaction coordinate, and molecular dynamics simulation of the initial stages of the assembly. The study reveals a complex self‐assembly process starting from the formation of amorphous aggregates that are transformed into crystalline material through a nucleation–growth process. Activation parameters indicate the key role of desolvation along the assembly pathway. The insights from the kinetic study correlate well with the structural data from cryo‐TEM imaging. Overall, the study reveals four stages of crystalline self‐assembly: 1) collapse into amorphous aggregates; 2) nucleation as partial ordering; 3) crystal growth; and 4) fusion of smaller crystalline aggregates into large crystals. These studies indicate that the assembly process proceeds according to a two‐step crystallization model, whereby initially formed amorphous material is reorganized into an ordered system. This process follows Ostwald’s rule of stages, evolving through a series of intermediate phases prior to forming the final structure, thus providing an insight into the crystalline self‐assembly process in aqueous medium.  相似文献   

20.
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non‐enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water‐soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self‐assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号