首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

2.
Dispersion RAFT polymerization of styrene in the alcohol/water mixture mediated with the brush macro‐RAFT agent of poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] with similar molecular weight but different chemical composition is investigated. Well‐controlled RAFT polymerization including an initial slow homogeneous polymerization and a subsequent fast heterogeneous polymerization at almost complete monomer conversion is achieved. The molecular weight of the synthesized block copolymer increases linearly with the monomer conversion, and the polydispersity is relatively narrow (PDI < 1.3). The RAFT polymerization kinetics is dependent on the chemical composition in the brush macro‐RAFT agents, and those with high content of hydrophobic segment lead to fast RAFT polymerization. The growth of the block copolymer nano‐objects during the RAFT polymerization is explored, and various block copolymer nano‐objects such as nanospheres, worms, vesicles and large‐compound‐micelle‐like particles are prepared. The parameters such as the chemical composition in the brush macro‐RAFT agent, the chain length of the solvatophobic block, the concentration of the feeding monomer and the solvent character affecting the size and morphology of the block copolymer nano‐objects are investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3177–3190  相似文献   

3.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
The reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in alcohol/water mixture mediated with the poly(N‐isopropylacrylamide) trithiocarbonate macro‐RAFT agent (PNIPAM‐TTC) is studied and compared with the general RAFT dispersion polymerization in the presence of a small molecular RAFT agent. Both the homogeneous/quasi‐homogeneous polymerization before particle nucleation and the heterogeneous polymerization after particle nucleation are involved in the PNIPAM‐TTC‐mediated RAFT polymerization, and the two‐stage increase in the molecular weight (Mn) and nanoparticle size of the synthesized block copolymer is found. In the initial homogeneous/quasi‐homogeneous polymerization, the Mn and nanoparticle size slowly increase with monomer conversion, whereas the Mn and particle size quickly increase in the subsequent heterogeneous RAFT polymerization, which is much different from those in the general RAFT dispersion polymerization. Besides, the PNIPAM‐TTC‐mediated RAFT polymerization runs much faster than the general RAFT dispersion polymerization. This study is anticipated to be helpful to understand the polymer chain extension through RAFT polymerization under dispersion conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

8.
The in situ synthesis of the nano‐assemblies of the high molecular weight ferrocene‐containing block copolymer of poly(ethylene glycol)‐block‐poly(4‐vinylbenzyl ferrocenecarboxylate) (PEG‐b‐PVFC) via dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization was discussed. Taking the advantage of the accelerated polymerization rate of the dispersion RAFT polymerization, the nano‐objects of the well‐defined PEG‐b‐PVFC diblock copolymer with the polymerization degree (DP) of the ferrocene‐containing PVFC block up to 300 were prepared. It was found that the morphology of the PEG‐b‐PVFC diblock copolymer nano‐assemblies was dependent on the DP of the PEG and PVFC blocks, and nanospheres favorably formed in the case of the long PEG block and vesicles containing a thick and porous membrane were formed in the case of the short PEG block and long PVFC block, respectively. Our results demonstrate that the dispersion RAFT polymerization is an effective way to prepare the high molecular weight ferrocene‐containing block copolymer with interesting morphologies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 900–909  相似文献   

9.
A simple route to organic–inorganic (O/I) nano‐objects with different morphologies through polymerization‐induced block copolymer self‐assembly is described. The synthetic strategy relies on the chain‐extension of polyhedral oligomeric silsesquioxanes (POSS)‐containing macro‐CTA (PMAiBuPOSS13 and PMAiBuPOSS19) with styrene at 120 °C in octane, a selective solvent of the POSS‐containing block. The polymerization system was proven to afford a plethora of O/I nano‐objects, such as spherical micelles, cylindrical micelles, and vesicles depending on the respective molar masses of the PMAiBuPOSS and polystyrene (PS) blocks. The cooling procedure was also proven to be a crucial step to generate particles with a unique morphology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4558–4564  相似文献   

10.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

11.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

12.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

13.
Surface functionalization in a nanoscopic scaffold is highly desirable to afford nano‐particles with diversified features and functions. Herein are reported the surface decoration of dispersed block copolymer nano‐objects. First, side‐chain double bond containing oleic acid based macro chain transfer agent (macroCTA), poly(2‐(methacryloyloxy)ethyl oleate) (PMAEO), was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization and used as a steric stabilizer during the RAFT dispersion block copolymerization of benzyl methacrylate (BzMA) in n‐heptane at 70 °C. We have found that block copolymer morphologies could evolve from spherical micelles, through worm to vesicles, and finally to large compound vesicles with the increase of solvophobic poly(BzMA) block length, keeping solvophilic chain length and total solid content constant. Finally, different thiol compounds having alkyl, carboxyl, hydroxyl, and protected amine functionalities have been ligated onto the PMAEO segment, which is prone to functionalization via its reactive double bond through thiol‐ene radical reactions. Thiol‐ene modification reactions of the as‐synthesized nano‐objects retain their morphologies as visualized by field emission‐scanning electron microscopy. Thus, the facile and modular synthetic approach presented in this study allowed in situ preparation of surface modified block copolymer nano‐objects at very high concentration, where renewable resource derived oleate surface in the nanoparticle was functionalized. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 263–273  相似文献   

14.
A new, efficient method for synthesizing stable nanoparticles with poly(ethylene oxide) (PEO) functionalities on the core surface, in which the micellization and crosslinking reactions occur in one pot, has been developed. First, amphiphilic PEO‐b‐PS copolymers were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization of styrene using (PEO)‐based trithiocarbonate as a macro‐RAFT agent. The low molecular weight PEO‐b‐PS copolymer was dissolved in isopropyl alcohol where the block copolymer self‐assembled as core‐shell micelles, and then the core‐shell interface crosslink was performed using divinylbenzene as a crosslinking agent and 2,2′‐azobisisobutyronitrile as an initiator. The design of the amphiphilic RAFT agent is critical for the successful preparation of core‐shell interface crosslinked micellar nanoparticles, because of RAFT functional groups interconnect PEO and polystyrene blocks. The PEO functionality of the nanoparticles surface was confirmed by 1H NMR and FTIR. The size and morphology of the nanoparticles was confirmed by scanning electron microscopy, transmission electron microscopy, and dynamic laser light scattering analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
RAFT copolymerization of beta‐pinene and maleic anhydride was successfully achieved for the first time, using 1‐phenylethyl dithiobenzoate as chain transfer agent in a mixed solvent of tetrehydrofuran and 1.4‐dioxane (1:9, v/v) at a feed molar ratio of beta‐pinene to maleic anhydride as 3:7, and the alternating copolymer was prepared with predetermined molecular weight and narrow molecular weight distribution. Furthermore, using former alternating copolymer as a macro‐RAFT agent, block copolymer poly(beta‐pinene‐alt‐maleic anhydride)‐b‐polystyrene was synthesized in a chain extending with styrene. Hydrolysis of this block copolymer under acidic conditions formed a new amphiphilic block copolymers poly(beta‐pinene‐alt‐maleic acid)‐b‐polystyrene whose self‐assembly behaviors in aqueous solution at different pH were investigated through SEM and DLS. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1422–1429  相似文献   

16.
Amphiphilic polymeric particles with hydrophobic cores and hydrophilic shells were prepared via living radical emulsion polymerization of styrene using a water‐soluble poly(acrylamide)‐based macro‐RAFT agent in aqueous solution in the absence of any surfactants. Firstly, the homopolymerization of acrylamide (AM) was carried out in aqueous phase by reversible addition‐fragmentation chain transfer radical polymerization (RAFT) using a trithiocarbonate as a chain transfer agent. Then the PAM‐based macro‐RAFT agent has been used as a water‐soluble macromolecular chain transfer agent in the batch emulsion polymerization of Styrene (St) free of surfactants. The RAFT controlled growth of hydrophobic block led to the formation of well‐defined poly(acrylamide)‐copolystyrene amphiphilic copolymer, which was able to work as a polymeric stabilizer (self‐stability). Finally, very stable latex was prepared, having no visible phase separation for several months. FTIR and 1H‐NMR measurements showed that the product was the block copolymer PAM‐co‐PS in the form of stable latex. Atomic force microscope (AFM), transmission electron microscope (TEM), and dynamic light scattering (DLS) studies indicated that the nanoparticles have a narrow particle size distribution and the average particle hydrodynamic radius was kept in the diameter of 58 nm. Core‐shell structure of the copolymer was also recorded by TEM. The mechanism of the self‐stability of polymer particles during the polymerization in the absence of surfactants was studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3098–3107, 2008  相似文献   

17.
Synthesis of the ABA triblock copolymer nanoparticles of poly(N,N‐dimethylacrylamide)‐block‐polystyrene‐block‐poly(N,N‐dimethylacrylamide) (PDMA‐b‐PS‐b‐PDMA) by seeded RAFT polymerization is performed, and the effect of the introduced third poly(N,N‐dimethylacrylamide) (PDMA) block on the size and morphology of the PDMA‐b‐PS‐b‐PDMA triblock copolymer nanoparticles is investigated. This seeded RAFT polymerization affords the in situ synthesis of the PDMA‐b‐PS‐b‐PDMA core‐corona nanoparticles, in which the middle solvophobic PS block forms the compacted core, and the first solvophilic PDMA block and the introduced third PDMA block form the solvated complex corona. During the seeded RAFT polymerization, the introduced third PDMA block extends, and the molecular weight of the PDMA‐b‐PS‐b‐PDMA triblock copolymer linearly increases with the monomer conversion. It is found that, the size of the PS core in the PDMA‐b‐PS‐b‐PDMA triblock copolymer core‐corona nanoparticles is almost equal to that in the precursor of the poly(N,N‐dimethylacrylamide)‐block‐polystyrene diblock copolymer core‐corona nanoparticles and it keeps constant during the seeded RAFT polymerization, and whereas the introduction of the third PDMA block leads to a crowded complex corona on the PS core. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1777–1784  相似文献   

18.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

19.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

20.
Herein, we demonstrate the effects of using 4‐cyano‐4‐[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDPA) simultaneously as RAFT chain transfer agent (RAFT‐CTA) and (co)stabilizer in a miniemulsion polymerization process. The novelty of this report includes use this RAFT‐CTA without modification, such as macro‐CTAs, block, or random copolymers. Using an optimized polymerization procedure, it is possible to use distinct formulations and therefore obtain stable latexes comprised of well‐defined spherical nanoparticles. The polymerization kinetics and final polymer properties are directly correlated to the function of the CDPA in the system: RAFT‐CTA and/or (co)stabilizer. Typically, the nanoparticles present average diameters less than 150 nm. The molar mass properties and the kinetic profiles confirm to an expected RAFT process, although some deviations are observable when using the CDPA as only stabilizer. These deviations are a function of the amount of CDPA present within the nano‐droplets, or adsorption on its surface. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1687–1695  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号