首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using X‐ray crystallography, we show that the complexes Λ/Δ‐[Ru(TAP)2(11‐CN‐dppz)]2+ (TAP=1,4,5,8‐tetraazaphenanthrene, dppz=dipyridophenazine) bind DNA G‐quadruplex in an enantiospecific manner that parallels the specificity of these complexes with duplex DNA. The Λ complex crystallises with the normally parallel stranded d(TAGGGTTA) tetraplex to give the first such antiparallel strand assembly in which syn‐guanosine is adjacent to the complex at the 5′ end of the quadruplex core. SRCD measurements confirm that the same conformational switch occurs in solution. The Δ enantiomer, by contrast, is present in the structure but stacked at the ends of the assembly. In addition, we report the structure of Λ‐[Ru(phen)2(11‐CN‐dppz)]2+ bound to d(TCGGCGCCGA), a duplex‐forming sequence, and use both structural models to provide insight into the motif‐specific luminescence response of the isostructural phen analogue enantiomers.  相似文献   

2.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

3.
The bi‐exponential emission decay of [Ru(L)2dppz]2+ (L=N,N′‐diimine ligand) bound to DNA has been studied as a function of polynucleotide sequence, enantiomer, and nature of L (phenanthroline vs. bipyridine). The lifetimes (τi) and pre‐exponential factors (αi) depend on all three parameters. With [poly(dA‐dT)]2, the variation of αi with [Nu]/[Ru] has little dependence on L for Λ‐[Ru(L)2dppz]2+ but a substantial dependence for Δ‐[Ru(L)2dppz]2+. With [poly(dG‐dC)]2, by contrast, the Λ‐enantiomer αi values depend strongly on the nature of L, whereas those of the Δ‐enantiomer are relatively unaffected. DNA‐bound linked dimers show similar photophysical behaviour. The lifetimes are identified with two geometries of minor‐groove intercalated [Ru(L)2dppz]2+, resulting in differential water access to the phenazine nitrogen atoms. Interplay of cooperative and anti‐cooperative binding resulting from complex–complex and complex–DNA interactions is responsible for the observed variations of αi with binding ratio. [Ru(phen)2dppz]2+ emission is quenched by guanosine in DMF, which may further rationalise the shorter lifetimes observed with guanine‐rich DNA.  相似文献   

4.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

5.
In an effort to explore the effect of ancillary ligands on the spectral properties and overall G‐quadruplex DNA binding behavior, two new ruthenium(II) complexes [Ru(phen)2(dppzi)]2+ ( 1 ) and [Ru(dmp)2(dppzi)]2+ ( 2 ) (phen=1,10‐phenanthroline, dmp=2,9‐dimethyl‐1,10‐phenanthroline, dppzi=dipyrido[3,2‐a:2′,3′‐c]phenazine‐10,11‐imidazole) were prepared. Complex 1 can emit luminescence in the absence and presence of G‐quadruplexes DNA. However, with ?CH3 substituent on the 2‐ and 9‐positions of the phen ancillary ligand, no detectable luminescence is observed for complex 2 in any organic solvent or in the absence and/or presence of G‐quadruplex DNA. Experimental and molecular docking studies indicated that both complexes interacted with the human telomeric repeat AG3(T2AG3)3 (22AG) G‐quadruplex with the stoichiometric ratio of 1:1, but the two complexes showed different G‐quadruplex DNA binding affinity. Complex 1 binds to the G‐quadruplexes DNA more tightly than complex 2 does. Our results demonstrate that methyl groups on the phen ancillary ligand significantly affect the spectral properties and the overall DNA binding behavior of the complexes. Such difference in spectral properties and DNA binding affinities of these two complexes can be reasonably explained by DFT/TD‐DFT calculations. This work provides guidance not only on exploring the G‐quadruplexes DNA binding behavior of complexes, but also understanding the unique luminescence mechanism.  相似文献   

6.
The title compound, [Ru(C12H8N2)3]2[Fe(NCS)4](ClO4)2, crystallizes in a tetragonal chiral space group (P41212) and the assigned absolute configuration of the optically active molecules was unequivocally confirmed. The Δ‐[RuII(phen)3]2+ complex cations (phen is 1,10‐phenanthroline) interact along the 41 screw axis parallel to the c axis, with an Ru...Ru distance of 10.4170 (6) Å, and in the ab plane, with Ru...Ru distances of 10.0920 (6) and 10.0938 (6) Å, defining a primitive cubic lattice. The Fe atom is situated on the twofold axis diagonal in the ab plane. The supramolecular architecture is supported by C—H...O interactions between the [RuII(phen)3]2+ cation and the disordered perchlorate anion. This study adds to the relatively scarce knowledge about intermolecular interactions between [Ru(phen)3]2+ ions in the solid state, knowledge that eventually may also lead to a better understanding of the solution state interactions of this species; these are of immense interest because of the photochemical properties of these ions and their interactions with DNA.  相似文献   

7.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

8.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

9.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

10.
A series of ruthenium(II) complexes with electron-donor or electron-acceptor groups in intercalative ligands, [Ru(phen)2(o-MOP)]2+ (1), [Ru(phen)2(o-MP)]2+ (2), [Ru(phen)2(o-CP)]2+ (3) and [Ru(phen)2(o-NP)]2+ (4), have been synthesized and characterized by elementary analysis, ES-MS, 1H NMR, electronic absorption and emission spectra. The binding properties of these complexes to CT-DNA have been investigated by spectroscopy and viscosity experiments. The results showed that these complexes bind to DNA in intercalation mode and their intrinsic binding constants (Kb) are 1.1, 0.35, 0.53 and 1.7 × 105 M−1, respectively. The subtle but detectable differences occurred in the DNA-binding properties of these complexes are mainly ascribed to the electron-withdrawing abilities of substituents (–OCH3 < –CH3 < –Cl < –NO2) on the intercalative ligands as well as the intramolecular H-bond (for substituent –OCH3) which increase the planarity area of the intercalative ligand to some extent. The density functional theory (DFT) calculations were also performed and used to further discuss the trend in the DNA-binding affinities of these complexes.  相似文献   

11.
Two new complexes, [Ru(phen)2(ppd)]2+ ( 1 ) and [Ru(phen)(ppd)2]2+ ( 2 ) (ppd=pteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, phen=1,10‐phenanthroline) were synthesized and characterized by ES‐MS, 1H‐NMR spectroscopy, and elemental analysis. The intercalative DNA‐binding properties of 1 and 2 were investigated by absorption‐spectroscopy titration, luminescence‐spectroscopy studies, thermal denaturation, and viscosity measurements. The theoretical aspects were further discussed by comparative studies of 1 and 2 by means of DFT calculations and molecular‐orbital theory. Photoactivated cleavage of pBR322 DNA by the two complexes were also studied, and 2 was found to be a much better photocleavage reagent than 1 . The mechanism studies revealed that singlet oxygen and the excited‐states redox potentials of the complex may play an important role in the DNA photocleavage.  相似文献   

12.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

13.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

14.
Ruthenium(II) complexes containing the tetradentate ligand bis[4(4′‐methyl‐2,2′‐bipyridyl)]‐1,n‐alkane (“bbn”; n=10 and 12) have been synthesised and their geometric isomers separated. All [Ru(phen)(bbn)]2+ (phen=1,10‐phenanthroline) complexes exhibited excellent activity against Gram‐positive bacteria, but only the cis‐α‐[Ru(phen)(bb12)]2+ species showed good activity against Gram‐negative species. In particular, the cis‐α‐[Ru(phen)(bb12)]2+ complex was two to four times more active than the cis‐β‐[Ru(phen)(bb12)]2+ complex against the Gram‐negative strains. The cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes readily accumulated in the bacteria but, significantly, showed the highest level of uptake in Pseudomonas aeruginosa. Furthermore, the accumulation of the cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes in P. aeruginosa was considerably greater than in Escherichia coli. The uptake of the cis‐α‐[Ru(phen)(bb12)]2+ complex into live P. aeruginosa was confirmed by using fluorescence microscopy. The water/octanol partition coefficients (log P) were determined to gain understanding of the relative cellular uptake. The cis‐α‐ and cis‐β‐[Ru(phen)(bbn)]2+ complexes exhibited relatively strong binding to DNA (Kb≈106 M ?1), but no significant difference between the geometric isomers was observed.  相似文献   

15.
Telomerase inhibition is an attractive strategy for cancer chemotherapy. In the current study, we have synthesized and characterized two chiral ruthenium(II) complexes, namely, Λ-[Ru(phen)(2)(p-MOPIP)](2+) and Δ-[Ru(phen)(2)(p-MOPIP)](2+), where phen is 1,10-phenanthroline and p-MOPIP is 2-(4-methoxyphenyl)-imidazo[4,5f][1,10]phenanthroline. The chiral selectivity of the compounds and their ability to discriminate quadruplex DNA were investigated by using UV/Vis, fluorescence spectroscopy, circular dichroism spectroscopy, fluorescence resonance energy transfer melting assay, polymerase chain reaction stop assay and telomerase repeat amplification protocol. The results indicate that the two chiral compounds could induce and stabilize the formation of antiparallel G-quadruplexes of telomeric DNA in the presence or absence of metal cations. We report the remarkable ability of the two complexes Λ-[Ru(phen)(2)(p-MOPIP)](2+) and Δ-[Ru(phen)(2)(p-MOPIP)](2+) to stabilize selectively G-quadruplex DNA; the former is a better G-quadruplex binder than the latter. The anticancer activities of these complexes were evaluated by using the MTT assay. Interestingly, the antiproliferative activity of Λ-[Ru(phen)(2)(p-MOPIP)](2+) was higher than that of Δ-[Ru(phen)(2)(p-MOPIP)](2+), and Λ-[Ru(phen)(2)(p-MOPIP)](2+) showed a significant antitumor activity in HepG2 cells. The status of the nuclei in Λ/Δ-[Ru(phen)(2) (p-MOPIP)](2+)-treated HepG2 cells was investigated by using real-time living cell microscopy to determine the effects of Λ/Δ-[Ru(phen)(2)(p-MOPIP)](2+) on intracellular accumulation. The results show that Λ/Δ-[Ru(phen)(2)(p-MOPIP)](2+) can be taken up by HepG2 cells and can enter into the cytoplasm as well as accumulate in the nuclei; this suggests that the nuclei were the cellular targets of Λ/Δ-[Ru(phen)(2)(p-MOPIP)](2+).  相似文献   

16.
Summary The complex ions [Ru(5-NO2phen)2(bipy)]2+ and [Ru(5-NO2phen)(bipy)2]2+ form adducts in aqueous solution with OH and CN via attack at the ligand, as shown by spectrophotometry. The rates of these additions have been measured and compared to those of similar reactions.  相似文献   

17.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

18.
New mixed polypyridyl {HPIP = 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline, phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, dmb = 4,4-dimethyl-2,2-bipyridine} ruthenium(II) complexes [Ru(phen)2(HPIP)]2+, [Ru(dmp)2(HPIP)]2+ and [Ru(dmb)2(HPIP)]2+ were synthesized and characterized by elemental analyses 1H-n.m.r., u.v.–vis. spectroscopy and cyclic voltammetry. Their DNA-binding properties were demonstrated by absorption, luminescence titrations, steady-state emission quenching and viscosity measurements. The results suggested that all the examined complexes bind with CT-DNA intercalatively. Methyl groups substituted at the 4,4-positions of bpy has no obvious effect on its DNA binding, whereas substituents at the 2- and 9-positions of phen have an impressive effect on its DNA-binding, as revealed by the decreased binding affinity.  相似文献   

19.
An intercalative ligand, ppip (ppip = {2-(4-(piperidin-1-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}), and its mononuclear Ru(II) polypyridyl complexes, [Ru(phen)2(ppip)]2+ (1) (phen=1,10-phenanthrolene), [Ru(bpy)2(ppip)]2+ (2) (bpy=2,2′-bipyridine) and [Ru(dmb)2(ppip)]2+ (3) (dmb=4,4′-dimethyl-2,2′-bipyridine), have been synthesized and characterized by elemental analysis and spectroscopic techniques such as UV–vis, IR, 1H, as well as 13C NMR and ESI-MS. The interaction of these complexes with DNA/BSA (bovine serum albumin) was investigated using absorption, emission spectroscopy, viscosity measurements and molecular docking studies. The docking study infers that the binding strength (Kb) of these complexes was in agreement with results from absorption and emission techniques. These studies reveal that these three Ru(II) polypyridyl complexes bind to DNA/BSA. The binding ability of these complexes in the presence of different ions and solvents were also reported. All complexes were effectively cleaving pBR322 DNA in different forms and follows order which is similar to absorption and emission studies. These complexes were effective exhibiting the antimicrobial activity against different microbes Bacillus subtilis, Escherichia coli and Staphylococcus aureus.  相似文献   

20.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号