首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
Given a sequence of positive real numbers \[{\varepsilon _0},{\varepsilon _1},...,{\varepsilon _n},...\] which satisfy the conditions \[{\varepsilon _v} \to 0,{\varepsilon _v} - {\varepsilon _{v + 1}} \ge 0,{\varepsilon _v} - 2{\varepsilon _{v + 1}} + {\varepsilon _{v + 2}} \ge 0\] for v =0, 1, 2, ..., and a class L(s) of 2pi-periodic, L-integrable functions f(x) such that \[{E_n}{(f)_L} \le {\varepsilon _n}(n = 0,1,2,...)\], where \[{E_n}{(f)_L}\] is the best mean approximation of f(x) by trigonometrical polynomials of degree ≤n Let \[{S_n}(f)\] be the n-th partial sum of the Fourier series of f(x). It’s known that Oskolkov has proved \[\mathop {\sup }\limits_{f \in L(\varepsilon )} ||f - {S_n}{(f)_L}|| = \sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} \] where \[||f|{|_L} = \int_0^{2\pi } {|f(x)|} dx\] Oskolkov asked whether there is a single function \[{f_0}(x) \in L(s)\] for which the above relation is satisfied for all n, In this paper the following result is obtained. Theorem Let \[L(\varepsilon )\] be a class of 2pi-periodic, L-integrable functions as giyen above, then there exists a funotion \[{f_0}(x) \in L(\varepsilon )\] such that \[{{\tilde f}_0}(x) \in L(\varepsilon )\] and \[\begin{array}{l} \overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{f_0} - {S_n}({f_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0\\overline {\mathop {\lim }\limits_{n \to \infty } } \frac{{{{\left\| {{{\tilde f}_0} - {S_n}({{\tilde f}_0})} \right\|}_L}}}{{\sum\limits_{v = n}^{2n} {\frac{{{\varepsilon _n}}}{{v - n + 1}}} }} \ge C > 0 \end{array}\] where C is an absolute constant. Some generalizations of the theorem are given.  相似文献   

2.
本文首先引入满足如下条件$$-\frac{qzD_{q}f(z)}{f(z)}\prec \varphi (z)$$和$$\frac{-(1-\frac{\alpha }{q})qzD_{q}f(z)+\alpha qzD_{q}[zD_{q}f(z)]}{(1-\frac{\alpha}{q})f(z)-\alpha zD_{q}f(z)}\prec \varphi (z)~(\alpha \in\mathbb{C}\backslash (0,1],\ 0相似文献   

3.
Let Q_N={\bar x=(x_1,\cdots ,x_N)|-pi \leq x_i <\pi,i=1,\cdots,N} and X(Q_N) denote L(Q_N) and C(Q_N) , The square de la УаДбо Poussin sums of f\in X (Q_N) are defined by $V_n^n+l(f;\bar x)=\frac{1}{\pi ^N}\int _Q_N f(\bar x+\bar t)\prod\limits_{i = 1}^N {(\frac{1}{{l + 1}}} \sum\limits_{v = n}^{n + l} {{D_v}({t_i}))d\bar t(n,l = 0,1,2, \cdots )}$ where D_v(t) =sin(v+1/2)t/2sint/2, - The differences $R_n,l(f;\bar x)=f(\bar x)-V_n^n+l(f;\bar x)$ are called square remainders. We denote by E_k(f)_X the best approximation of the function f\in X(Q_N) by N-multiple trigonometric polynomials of order K. Theorem Let {\varepsilon _k}_k=0^\infty be a sequence such that \varepsilon _n \downarrow \infty(n\rightarrow \infty), the class $X(\varepsilon)={f\in X(Q_N)|E_k(f)_X \leq \varepsilon _k,k=0,1,2,\cdots}$ Then $C_N^'\sum\limits_{v=0}^n+l \frac {\varepsilon_v+nln^N-1(3+v/(l+1))}{v+l+1}\leq sup_{f\in X(\varepsilon)||R_n,l(f)||_X\leq C_N \sum\limits_{v=0}^{n+l}\frac {\varepsilon _v+nln^N-1(3+v/l+1)}{v+l+1}$ where C_N>C'_N>0 are constants depending only on N.  相似文献   

4.
5.
In this paper, we have considered the generalized bi-axially symmetric Schr\"{o}dinger equation $$\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2} + \frac{2\nu} {x}\frac{\partial \varphi} {\partial x} + \frac{2\mu} {y}\frac{\partial \varphi} {\partial y} + \{K^2-V(r)\} \varphi=0,$$ where $\mu,\nu\ge 0$, and $rV(r)$ is an entire function of $r=+(x^2+y^2)^{1/2}$ corresponding to a scattering potential $V(r)$. Growth parameters of entire function solutions in terms of their expansion coefficients, which are analogous to the formulas for order and type occurring in classical function theory, have been obtained. Our results are applicable for the scattering of particles in quantum mechanics.  相似文献   

6.
设$\{X_{i}\}^{\infty}_{i=1}$是标准化非平稳高斯序列, $N_{n}$为$X_{1},X_{2},\cdots,X_{n}$对水平$\mu_{n}(x)$的超过数形成的点过程, $r_{ij}=\ep X_{i}X_{j}$, $S_{n}=\tsm_{i=1}^{n}X_{i}$. 在$r_{ij}$满足一定条件时, 本文得到了$N_{n}$与$S_{n}$的渐近独立性.  相似文献   

7.
In this paper, we give a coding theorem for general source sequence. A source sequence \[{\mathcal{T}^{(n)}} = \{ [{X^{(n)}},{p^{(n)}}({X^{(n)}})],[{X^{(n)}} \otimes {Y^{(n)}},{\rho ^{(n)}}({X^{(n)}},{Y^{(n)}})]\} \] is said to be \[({R^{(n)}},{d^{(n)}})\]-compress, if (i)\[{R^{(n)}}\], \[{d^{(n)}}\] are two sequences of real numbers \[{R^{(n)}} \to \infty \]; (ii) there exist \[{\varepsilon ^{(n)}} > 0({\varepsilon ^{(n)}} \to 0)\] and set \[{B^{(n)}} \subset {Y^{(n)}}\] so that \[|{B^{(n)}}| \leqslant {2^{{R^{(n)}}(1 + {\varepsilon ^{(n)}})}}\] and \[{p^{(n)}}{\text{\{ }}({X^{(n)}}){\rho ^{(n)}}({X^{(n)}},{B^{(n)}}) \leqslant {d^{(n)}}\} \geqslant 1 - {\varepsilon ^{(n)}}\] where \[{\rho ^{(n)}}({X^{(n)}},{B^{(n)}}) = \mathop {\min }\limits_{{y^{(n)}} \in {B^{(n}}} {\rho ^{(n)}}({X^{(n)}},{Y^{(n)}})\]. A \[{\mathcal{T}^{(n)}}\] is said to be \[({\mathcal{F}^{(n)}}{D^{(n)}})\]-information bounded, if (i)\[{\mathcal{F}^{(n)}} \to \infty \];(ii) there exist \[{\varepsilon ^{(n)}} > 0\] and conditional probability \[{Q^{(n)}}({Y^{(n)}}/{X^{(n)}})\] so that probability distribution \[{p^{(n)}}({X^{(n)}}{Y^{(n)}}) = {p^{(n)}}({X^{(n)}}){Q^{(n)}}({Y^{(n)}}/{X^{(n)}})\] is satisfied by \[\begin{gathered} {p^{(n)}}\{ ({X^{(n)}},{Y^{(n)}}):i({X^{(n)}},{Y^{(n)}}) \leqslant {\mathcal{F}^{(n)}}(1 + {\varepsilon ^{(n)}}), \hfill \ {\rho ^{(n)}}({X^{(n)}},{Y^{(n)}}) \leqslant {\rho ^{(n)}}\} \geqslant 1 - {\varepsilon ^{(n)}} \hfill \\ \end{gathered} \] where \[i({X^{(n)}},{Y^{(n)}}) = \log \frac{{{p^{(n)}}({X^{(n)}},{Y^{(n)}})}}{{{p^{(n)}}({X^{(n)}}){p^{(n)}}({Y^{(n)}})}}\] Theorem The necessary and sufficient conditions for a source sequence \[{\mathcal{F}^{(n)}}\] to be \[({R^{(n)}},{a^{(n)}})\]-compress is that \[{\mathcal{F}^{(n)}}\] must be \[({R^{(n)}},{a^{(n)}})\]-information bounded. From the theorem we obtain immediately the coding theorem and its converse for stationary and unstationary sources with memory.  相似文献   

8.
设$p>0$, $\mu$和$\mu_{1}$是$[0,1)$上的正规函数. 本文首先给出了$\mathbb{C}^{n}$中单位球上$\mu$-Bergman空间$A^{p}(\mu)$的几种等价刻画; 然后 分别刻画了$A^{p}(\mu)$到$A^{p}(\mu_{1})$的 微分复合算子$D_{\varphi}$为有界算子以及紧算子的充要条件, 同时给出了当$p>1$时$D_{\varphi}$为 $A^{p}(\mu)$到$A^{p}(\mu_{1})$上紧算子的一种简捷充分条件和必要条件.  相似文献   

9.
1谱位于平面上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子 记号与[1,2]相同,不再一一赘述.设序列 {Mk}满足(M.1),(M.2),(M.3)即.对数凸性、非拟解析性、可微性[1]. 由{M(k)}我们可以 定义二元相关函数\[M({t_1},{t_2})\](详见[7])以及二元\[{\mathcal{D}_{ < {M_k} > }}\]空间 \[{\mathcal{D}_{ < {M_k} > }} = \{ \varphi |\varphi \in \mathcal{D};\exists \nu ,st{\left\| \varphi \right\|_\nu } = \mathop {\sup }\limits_\begin{subarray}{l} s \in {R^2} \\ {k_i} \geqslant 0 \\ (i = 1,2) \end{subarray} |\frac{{{\partial ^{{k_1} + {k_2}}}}}{{{\partial ^{{k_1}}}{s_1}\partial _{{s_2}}^{{k_2}}}}\varphi (s)|/{\nu ^k}{M_k} < + \infty \} \] 其中\[s = ({s_1},{s_2})k = {k_1} + {k_2}\].关于谱位于复平面上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子的定义及性质可 参看[3,4].设X为Banach空间,B(X)为X上有界线性算子的全体组成的环.当 \[T \in B(X)\]为\[{\mathcal{D}_{ < {M_k} > }}\]型算子时,有\[T = {T_1} + i{T_2};{T_1} = {U_{Ret}}{T_2}{\text{ = }}{U_{\operatorname{Im} {\kern 1pt} t}}\] ,此处U为T的谱超广义函数,t为复变量.由于supp(U)为紧集,故可将U延拓到\[{\varepsilon _{ < {M_k} > }}\]上且保持连续性. 经过简单的计算,若\[T \in B(X)\]为谱位于平面上的一个\[{\mathcal{D}_{ < {M_k} > }}\]型算子,则T的一个谱 超广义函数(1)U可表成 \[{U_\varphi } = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {{e^{i({t_1}{T_1} + {t_2}{T_2})}}\hat \varphi } } ({t_1},{t_2})d{t_1}d{t_2}\] 设\[T \in B(X)\]为谱算子,S、N、E(.)分别为T的标量部分、根部、谱测度.下面的定理给出了谱算子成为\[{\mathcal{D}_{ < {M_k} > }}\]型算子的一个充分条件: 定理1设T为谱算子适合下面的条件 \[\mathop {\sup }\limits_{k > 0} \mathop {\sup }\limits_\begin{subarray}{l} |{\mu _j}| < 1 \\ {\delta _j} \in \mathcal{B} \\ j = 1,2,...,k \end{subarray} {(\left\| {\frac{{{N^n}}}{{n!}}\sum\limits_{j = 1}^k {{\mu _j}E({\delta _j})} } \right\|{M_n})^{\frac{1}{n}}} \to 0(n \to \infty )\] 其中\[\mathcal{B}\]为平面本的Borel集类.则T为\[{\mathcal{D}_{ < {M_k} > }}\]型算子且它的一个谱广义函数可表为 \[{U_\varphi } = \sum\limits_{n = 0}^\infty {\frac{{{N^n}}}{{n!}}} \int {{\partial ^n}} \varphi (s)dE(s)\] 推论1设E(?),N满足 \[{(\frac{{{M_n}}}{{n!}} \vee ({N^n}E))^{\frac{1}{n}}} \to 0\] 则T为\[{\mathcal{D}_{ < {M_k} > }}\]型算子. 推论2设N为广义幂零算子,则对于任何与N可换的标量算子S,S+N为\[{\mathcal{D}_{ < {M_k} > }}\]型算子的充分必要条件是 \[{(\frac{{\left\| {{N^n}} \right\|}}{{n!}}{M_n})^{\frac{1}{n}}} \to 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (n \to \infty )\] 在[4]中称满足上式的算子为\[\{ {M_k}\} \]广义幂零算子.显然\[\{ {M_k}\} \]广义幂零算子必为通 常的广义幂零算子.下面的命题给出了\[\{ {M_k}\} \] 广义幂零算子的一些性质. 命题 设N为广义幂零算子,则下列事实等价: (i ) N为\[\{ {M_k}\} \]广义幂零算子; (ii)对于任给的\[\lambda > 0\],存在\[{B_\lambda } > 0\]使(1) \[\left\| {R(\xi ,N)} \right\| \leqslant {B_\lambda }{e^{{M^*}(\frac{\lambda }{{|\xi |}})}}\](\[{|\xi |}\]充分小); (iii)对于任给的\[\mu > 0\],存在\[{A_\mu } > 0\]使 \[\left\| {{e^{izN}}} \right\| \leqslant {A_\mu }{e^{M(\mu |z|)}}\] 2谱位于实轴上的有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子本节讨论有界\[{\mathcal{D}_{ < {M_k} > }}\]型算子T成为谱算子 的条件,这里假定\[{\mathcal{D}_{ < {M_k} > }}\]中的函数是一元的,于是Т的谱位于实轴上.X*表示X的共轭 空间. 设\[f \in {\mathcal{D}^'}_{ < {M_k} > }\],由[8, 9],存在测度\[{\mu _n}(n \geqslant 0)\]使得对任何h>0,存在A>0适合 \[\sum\limits_{n = 0}^\infty {\frac{{{h^n}}}{{n!}}} {M_n}\int {|d{\mu _n}| \leqslant A} \]且 \[ < f,\varphi > = \sum\limits_{n = 0}^\infty {\frac{1}{{n!}}} \int {{\varphi ^{(n)}}} (t)d{\mu _n}(t)\] 一般说,上述\[{\mu _n}(n \geqslant 0)\]不是唯一的,为此我们引入 定义设\[{n_0}\]为正整,如果对一切\[n \geqslant {n_0}\],存在测度\[{{\mu _n}}\],它们的支集均包含在某一L 零测度闭集内,则称f是\[{n_0}\]奇异的,若\[{n_0}\] = 1,则称f是奇异的.设\[T \in B(X)\]为\[{\mathcal{D}_{ < {M_k} > }}\]型 算子,U为其谱超广义函数,如果对于任何\[x \in X{x^*} \in {X^*},{x^*}U\].x是\[{n_0}\]奇异的(奇异 的),则称T是\[{n_0}\]奇异的(奇异的)\[{\mathcal{D}_{ < {M_k} > }}\]型算子. 经过若干准备,可以证明下面的 定理2 设X为自反的Banach空间,则\[T \in B(X)\]为奇异\[{\mathcal{D}_{ < {M_k} > }}\]型算子的充分必要 条件是T为满足下列条件的谱算子: (i)对每个\[x \in X\]及\[{x^*} \in X\],\[\sup p({x^*}{N^n}E()x)\]包含在一个与\[n \geqslant 1\]无关的L零测 度闭集F内(F可以依赖于\[x{x^*}\]),此处E(?)、N分别是T的谱测度与根部; (ii)算子N是\[\{ {M_k}\} \]广义幂零算子. 推论 设X为自反的banach空间,\[T \in B(X)\]为奇异\[{\mathcal{D}_{ < {M_k} > }}\]型算子且\[\sigma (T)\]的测度 为零的充分必要条件是T为满足下列条件的谱算子: (i) E(?)的支集为L零测度集; (ii) 算子N是\[\{ {M_k}\} \]广义幂零算子.;  相似文献   

10.
设$\mathbb{T}$是模为1的复数乘法子群.图$G=(V,E)$,这里$V,E$分别表示图的点和边.增益图是将底图中的每条边赋于$\mathbb{T}$中的某个数值$\varphi(v_iv_j)$,且满足$\varphi(v_iv_j) =\overline{\varphi(v_jv_i)}$.将赋值以后的增益图表示为$(G,\varphi)$.设$i_+(G,\varphi)$和$i_+(G)$分别表示增益图与底图的正惯性指数,本文证明了如下结论: $$ - c( G ) \le {i_ + } ( {G,\varphi } ) - {i_ + }( G ) \le c( G ), $$ 这里$c(G)$表示圈空间维数,并且刻画了等号成立时候的所有极图.  相似文献   

11.
Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.  相似文献   

12.
Let \(X, X_{1}, X_{2}, \ldots \) be i.i.d. random variables, and set \(S_{n}=X_{1}+\cdots +X_{n}\) and \( V_{n}^{2}=X_{1}^{2}+\cdots +X_{n}^{2}.\) Without any moment conditions on \(X\), assuming that \(\{S_{n}/V_{n}\}\) is tight, we establish convergence of series of the type (*) \(\sum \nolimits _{n}w_{n}P(\left| S_{n}\right| /V_{n}\ge \varepsilon b_{n}),\) \(\varepsilon >0.\) Then, assuming that \(X\) is symmetric and belongs to the domain of attraction of a stable law, and choosing \(w_{n}\) and \(b_{n}\) suitably\(,\) we derive the precise asymptotic behavior of the series (*) as \(\varepsilon \searrow 0. \)  相似文献   

13.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

14.
Let φ be a primitive Maass cusp form and t φ (n) be its nth Fourier coefficient at the cusp infinity. In this short note, we are interested in the estimation of the sums ${\sum_{n \leq x}t_{\varphi}(n)}$ and ${\sum_{n \leq x}t_{\varphi}(n^2)}$ . We are able to improve the previous results by showing that for any ${\varepsilon > 0}$ $$\sum_{n \leq x}t_{\varphi}(n) \ll\, _{\varphi, \varepsilon} x^{\frac{1027}{2827} + \varepsilon} \quad {and}\quad\sum_{n \leq x}t_{\varphi}(n^2) \ll\,_{\varphi, \varepsilon} x^{\frac{489}{861} + \varepsilon}.$$   相似文献   

15.
对一列独立同分布平方可积的随机变量序列{Xn,n≥1},当随机变量的分布具有中尾分布时,讨论了其截断和Tn(a)的随机乘积的渐近正态性质,其中Tn(a)=Sn-Sn(a),n=1,2,…,Sn(a)=n∑ j=1 XjI{Mn-a<Xj≤Mn},a为某一大于零的常数'Mn=max 1≤k≤n{Xk}.  相似文献   

16.
Given a field of independent identically distributed (i.i.d.) random variables $ \left\{ {X_{\bar n} ;\bar n \in \aleph ^d } \right\} $ indexed by d-tuples of positive integers and taking values in a separable Banach space B, let $ X_{\bar n}^{(r)} = X_{\bar m} $ is the r-th maximum of $ \left\{ {\left\| {X_{\bar k} } \right\|;\bar k \leqq \bar n} \right\} $ and let $ ^{(r)} S_{\bar n} = S_{\bar n} - \left( {X_{\bar n}^{(1)} + \cdots + X_{\bar n}^{(r)} } \right) $ be the trimmed sums, where $ S_{\bar n} = \sum\nolimits_{\bar k \leqq \bar n} {X_{\bar k} } $ . This paper aims to obtain a general law of the iterated logarithm (LIL) for the trimmed sums which improves previous works.  相似文献   

17.
In this paper, we discuss the moving-average process Xk = ∑i=-∞ ^∞ ai+kεi, where {εi;-∞ 〈 i 〈 ∞} is a doubly infinite sequence of identically distributed ψ-mixing or negatively associated random variables with mean zeros and finite variances, {ai;-∞ 〈 i 〈 -∞) is an absolutely solutely summable sequence of real numbers.  相似文献   

18.
Let be i.i.d. random variables with , and set . We prove that, for


under the assumption that and Necessary and sufficient conditions for the convergence of the sum above were established by Lai (1974).

  相似文献   


19.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

20.
设{X_(ni):1≤i≤n,n≥1}为行间NA阵列,g(x)是R~+上指数为α的正则变化函数,r>0,m为正整数,{a_(ni):1≤i≤n,n≥1}为满足条件(?)|a_(ni)|=O((g(n))~1)的实数阵列,本文得到了使sum from n=1 to ∞n~(r-1)Pr(|■multiply from j=1 to m a_(nij) X_(nij)|>ε)<∞,■ε>0成立的条件,推广并改进了Stout及王岳宝和苏淳等的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号