首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a hybrid numerical approach to predict the vibrational responses of planar structures excited by a turbulent boundary layer is presented. The approach combines an uncorrelated wall plane wave technique with the finite element method. The wall pressure field induced by a turbulent boundary layer is obtained as a set of uncorrelated wall pressure plane waves. The amplitude of these plane waves are determined from the cross spectrum density function of the wall pressure field given either by empirical models from literature or from experimental data. The response of the planar structure subject to a turbulent boundary layer excitation is then obtained from an ensemble average of the different realizations. The numerical technique is computationally efficient as it rapidly converges using a small number of realizations. To demonstrate the method, the vibrational responses of two panels with simply supported or clamped boundary conditions and excited by a turbulent flow are considered. In the case study comprising a plate with simply supported boundary conditions, an analytical solution is employed for verification of the method. For both cases studies, numerical results from the hybrid approach are compared with experimental data measured in two different anechoic wind tunnels.  相似文献   

2.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
基于平板湍流边界层的壁压起伏波数—频率谱 ,给出了一种湍流边界层声辐射的估算方法 ,并对光滑平板湍流边界层和平板表面粗糙度引起的湍流边界层声辐射进行了分析。结果表明 :湍流边界层声辐射是一种四极子声辐射 ,且其辐射声能集中于平板表面粗糙度引起的湍流边界层声辐射 ;光滑平板湍流边界层的声辐射也不可忽略。  相似文献   

4.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Reynolds Stress Budgets in Couette and Boundary Layer Flows   总被引:1,自引:0,他引:1  
Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without adverse pressure gradient. Comparison of the total shear stress for the two types of flows suggests that the Couette case may be regarded as the high Reynolds number limit for the boundary layer flow close to the wall. The limit values of turbulence statistics close to the wall for the boundary layer for increasing Reynolds number approach the corresponding Couette flow values. The direction of rotation is chosen so that it has a stabilizing effect, whereas the adverse pressure gradient is destabilizing. The pressure-strain rate tensor in the Couette flow case is presented for a split into slow, rapid and Stokes terms. Most of the influence from rotation is located to the region close to the wall, and both the slow and rapid parts are affected. The anisotropy for the boundary layer decreases for higher Reynolds number, reflecting the larger separation of scales, and becomes close to that for Couette flow. The adverse pressure gradient has a strong weakening effect on the anisotropy. All of the data presented here are available on the web [36]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.  相似文献   

7.
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remai  相似文献   

8.
The prediction of bypass transition remains an important problem in many engineering applications. This is largely because there is no suitable theoretical model for bypass transition and predictions are made using empirical models. This paper presents numerical results for the receptivity of a zero pressure gradient boundary layer subjected to simple freestream waveforms which are the constituent parts of a turbulent flow field. Significant receptivities are only obtained for a minority of freestream waveforms and these lead to two types of flow structure in the boundary layer. The first type of flow structure is essentially two dimensional in nature and consists of two rows of counter-rotating spanwise vortices and is induced by freestream waves of large normal and spanwise wavelength and streamwise wavelengths approximately equal to the boundary layer thickness. The second type of flow structure are the streamwise streaks frequently observed in flow visualisation experiments. These streaks are induced by freestream waves of long streamwise and normal wavelength and spanwise wavelengths in the range of 14.5-46 θ (1.7-5.4δ). The freestream waves can be formed of velocity components in any direction, however the boundary layer is most receptive to fluctuations that lie in a plane perpendicular to the streamwise direction. The overall receptivity to a full spectrum of waves typical of freestream turbulence is considered and is shown to have similar characteristics to those from experiments.  相似文献   

9.
A fully coupled structural–acoustic model of a cylindrical shell under external turbulent boundary layer excitation is herein developed. The numerical process requires computation of the wall pressure cross spectral density function as well as sensitivity functions for the fluid-loaded cylindrical shell. A semi-empirical model from literature is used to describe the wall pressure field induced by the turbulent boundary layer in the wavenumber–frequency domain. An analytical expression of the wall pressure field for a flat surface is adapted to describe the wall pressure field for a cylindrical surface. Circumferential sensitivity functions are derived using a wavenumber-point reciprocity principle. Results for the near-field and far-field acoustic pressure spectra are presented. Contributions of individual circumferential modes to the acoustic pressure spectra are examined, showing distinct trends below and above the ring frequency. The proposed method is computationally efficient and provides an effective approach to investigate vibroacoustic responses for maritime platforms.  相似文献   

10.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

11.
The results of an experimental investigation into the steady-state plane turbulent boundary layer in an incompressible liquid at an impermeable wall are presented. Cases of flow at smooth and rough surfaces in the presence of a longitudinal pressure gradient are considered. The results of measurements of the turbulent structure of the flow at various distances from the channel inlet are presented. A detailed analysis of the kinematic and dynamic characteristics of the flow is given. Special attention is paid to the boundary region of the flow close to the wall. A universal law is proposed for the variation in the local resistance coefficient along the boundary layer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–134, May–June, 1971.  相似文献   

12.
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results.  相似文献   

13.
Experiments were conducted in a turbulent boundary layer near separation along a flat plate. The pressure gradient in flow direction was varied such that three significant boundary layer configurations could be maintained. The flow in the test section thus had simultaneously a region of favourable pressure gradient, a region of strong adverse pressure gradient with boundary layer separation and a region of reattached boundary layer. Specially designed fine probes facilitated the measurements of skin friction and velocity distribution very close to the wall. Bulk flow parameters such as skin friction coefficient C f, Reynold's number Reδ2 and shape factors H and G, which are significant characteristics of wall boundary layers were evaluated. The dependence of these parameters on the Reynolds number and along the test section was explored and the values were compared with other empirical and analytical formulae known in the literature.  相似文献   

14.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Near-wall measurements are performed to study the effects of surface roughness and viscous shear stresses on the transitionally rough regime (5 < k + < 70) of a zero pressure gradient turbulent boundary layer. The x-dependence is known from the eleven consecutive measurements in the streamwise direction, which allows for the computation of the streamwise gradients in the boundary layer equations. Thus, the skin friction is computed from the integrated boundary layer equation with errors of 3 and 5% for smooth and rough, respectively. It is found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the wall shear stress due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction as k + increases into the fully rough regime. Furthermore, the roughness at the wall reduces the high peak of the streamwise component of the Reynolds stress in the near-wall region. However, for the Reynolds wall-normal and shear stress components, its contribution is not significantly altered for sand grain roughness.  相似文献   

16.
17.
The results of measuring the pressure fluctuations on the wall of the nozzle of a hypersonic wind tunnel beneath a developed turbulent boundary layer are presented for the Mach number M = 7.5. On the basis of a statistical analysis, it is shown that the action of the turbulent flow is dynamically similar to the propagation of a random sequence of wave packets with continuously distributed temporal and spatial scales. Low-frequency disturbances are associated with large-scale structures of long duration that propagate at a mean-statistical velocity similar in value to the outer flow velocity. The continuous generation of weakly-correlated small-scale disturbances ensuring the maintenance and development of turbulence occurs chiefly in the inner region of the boundary layer. Spectral estimates of the power generated by the turbulent flow in the wall region of the boundary layer are presented.  相似文献   

18.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

19.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

20.
The one-dimensional unsteady problem of the variation of the pressure on a rigid wall covered with a thin compressible layer upon which a plane acoustic wave impinges is investigated. The investigation is carried out from two standpoints: without allowance for wave processes in the layer (in this case the layer is modeled by means of a special boundary condition [1] and the pressure on the wall is a continuous function of time) and with allowance for the waves transporting the pressure perturbation from the outer edge of the layer to the wall and back (in this case the pressure on the wall is a piecewise-continuous function of time). A criterion of the proximity of the results of the two approaches is the smallness of the acoustic impedance ratio before interaction begins. This holds true even when the high intensities of the incident waves lead to considerable compression of the layer and an increase in its acoustic impedance.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 139–148, July–August, 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号