首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

2.
基于平板湍流边界层的壁压起伏波数—频率谱 ,给出了一种湍流边界层声辐射的估算方法 ,并对光滑平板湍流边界层和平板表面粗糙度引起的湍流边界层声辐射进行了分析。结果表明 :湍流边界层声辐射是一种四极子声辐射 ,且其辐射声能集中于平板表面粗糙度引起的湍流边界层声辐射 ;光滑平板湍流边界层的声辐射也不可忽略。  相似文献   

3.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
This paper deals with acoustic radiation by a thin elastic shell, closed by two perfectly rigid discs, immersed in water and filled with air. The system is driven by an internal acoustic source. The shell has a length L, is clamped along one of its boundaries and is freely supported along the other boundary. Using the infinite domain Green's function, the radiated acoustic pressure is modeled by a hybrid layer potential (linear combination with nonreal coefficient of a simple layer and a double layer). Using Green's tensor of the in vacuo shell operator, the shell displacement is expressed as the sum of the field generated by the acoustic pressures and that due to boundary sources. Finally, the Green's function of the interior Neumann problem is used to express the acoustic pressure inside the shell in terms of the acoustic source and shell normal displacement: this representation fails for any frequency equal to one of the resonance frequencies of the shell interior. To overcome this, a light fluid approximation, which is allowed because the inner fluid is a gas, is adopted. Around each resonance frequency, an inner approximation is defined which matches the classical outer approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A study is made of the problem of a two-dimensional turbulent boundary layer on the moving surface of a cylindrical body (a Rankine oval with a relative elongation of four) moving at constant velocity in an incompressible fluid. For the numerical simulation of the turbulent flow of the fluid, the boundary layer is divided into exterior and interior regions in accordance with a two-layer model, using different expressions for the coefficients of turbulent transfer for each region. A study was nade of the development of the boundary layer on the body at different speeds of the body surface and different Reynolds numbers. The following integral characteristics were found by numerical calculation: the work of friction as the body is displaced; the work expended on the movement of its surface; and, for a flow regime with separation, the work of the pressure force. In this case the following model of separation flow is assumed: beyond the singular point in the solution of the boundary layer equations that indicates the appearance of a region of reverse flow, the pressure and friction stress on the wall are constant and are determined by their values at the singular point.Translated from Izvestiya Akademii Nauk SSSH, Mekhanika Zhidkosti i Gaza, No. 5, pp. 61–67, September–October, 1984.Finally, the author would like to thank G. G. Chernyi and Yu. D. Shevelev for useful discussions and for their interest in this work.  相似文献   

7.
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations. Using deformation harmonious conditions of the interface, the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell. In studying the acoustic field produced by vibration of the submerged ring-stiffened cylindrical coated shell, the structure dynamic equation, Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou-pling vibration equation of the sound-fluid-structure. The extract of sound pressure comes down to the extract of coupling vibration equation. By use of the solution of the equation, the influences of hydrostatic pressure, physical characters and geometric parameters of the layer on sound radiation are discussed.  相似文献   

8.
A theoretical analysis is described that determines the conditions for Helmholtz resonance for a popular class of self-contained microjet actuator used in both synthetic- and pressure-jump (pulse-jet) mode. It was previously shown that the conditions for Helmholtz resonance are identical to those for optimizing actuator performance for maximum mass flux. The methodology is described for numerical-simulation studies on how Helmholtz resonance affects the interaction of active and nominally inactive micro-jet actuators with a laminar boundary layer. Two sets of numerical simulations were carried out. The first set models the interaction of an active actuator with the boundary layer. These simulations confirm that our criterion for Helmholtz resonance is broadly correct. When it is satisfied we find that the actuator cannot be treated as a predetermined wall boundary condition because the interaction with the boundary layer changes the pressure difference across the exit orifice thereby affecting the outflow from the actuator. We further show that strong inflow cannot be avoided even when the actuator is used in pressure-jump mode. In the second set of simulations two-dimensional Tollmien–Schlichting waves, with frequency comparable with, but not particularly close to, the Helmholtz resonant frequency, are incident on a nominally inactive micro-jet actuator. The simulations show that under these circumstances the actuators act as strong sources of 3D Tollmien–Schlichting waves. It is surmised that in the real-life aeronautical applications with turbulent boundary layers broadband disturbances of the pressure field, including acoustic waves, would cause nominally inactive actuators, possibly including pulsed jets, to act as strong disturbance sources. Should this be true it would probably be disastrous for engineering applications of such massless microjet actuators for flow control.  相似文献   

9.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

10.
Under engineering conditions the surfaces over which fluids flow are not usually hydraulically smooth. In this connection it is important to investigate the generation of sound by a turbulent boundary layer on a rough surface. Turbulent flow over a deformed surface creates dipole sources of sound, which may considerably increase the acoustic emission as compared with the quadrupole emission from a boundary layer on a smooth plate [1, 2]. In the case of sandy roughness estimates of the acoustic field are usually based on the energy summation of the fields generated by flow over the individual roughness elements [3, 4]. In this case not easily verifiable assumptions are made concerning the nature of the turbulent flow near the roughness, and the intensity of the emission is found correct to a constant factor subject to experimental determination. In the present study, in order to calculate the acoustic emission of a boundary layer on a surface with sandy roughness, it is proposed to employ the available experimental data on the cross of the surface pressure.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 20–26, September–October, 1985.  相似文献   

11.
Fluid-surface interaction, is very much influenced by the flow distribution and the flow spectra. For biological surfaces, cell functions such as mytosis and cell turnover, can be triggered by the instantaneous flow fluctuations which induce augmented shear stress levels inside the wall surface boundary layer. The objective of this work is to study the flow field along a cellular surface and to understand the interaction process. For that purpose, a cone and plate apparatus was built in which the transitional and turbulent instantaneous flow field characteristics, especially near the plate surface, were investigated using spatial hot wire anemometry, concentrating on time domain and spectral analysis. The frequency spectrum of velocity fluctuations near the plate is influenced by the plate roughness. We found that there is a linear relation between wall roughness and the preferred frequencies of the spectra. In addition a universal law exists for mean velocities, similar to the logarithmic law of the wall, when normalized by 1/2, the apparatus Reynolds number. Received: 31 March 1998/Accepted: 11 January 1999  相似文献   

12.
We present here experimental results in a shock wave/turbulent boundary layer interaction at Mach number of 2.3 impinged by an oblique shock wave, with a deflection angle of 9.5°, as installed in the supersonic wind tunnel of the IUSTI laboratory, France. For such a shock intensity, strong unsteadiness are developing inside the separated zone involving very low frequencies associated with reflected shock motions.The present work consists in simultaneous PIV velocity fields and unsteady wall pressure measurements. The wall pressure and PIV measurements were used to characterize the pressure distribution at the wall in an axial direction, and the flow field associated. These results give access for the first time to the spatial-time correlation between wall pressure and velocity in a shock wave turbulent boundary layer interaction and show the feasibility of such coupling techniques in compressible flows. Linear Stochastic Estimation (LSE) coupled with Proper Orthogonal Decomposition (POD) has been applied to these measurements, and first results are presented here, showing the ability of these techniques to reproduce both the unsteady breathing of the recirculating bubble at low frequency and the Kelvin–Helmholtz instabilities developing at moderate frequency.  相似文献   

13.
In this work, a hybrid numerical approach to predict the vibrational responses of planar structures excited by a turbulent boundary layer is presented. The approach combines an uncorrelated wall plane wave technique with the finite element method. The wall pressure field induced by a turbulent boundary layer is obtained as a set of uncorrelated wall pressure plane waves. The amplitude of these plane waves are determined from the cross spectrum density function of the wall pressure field given either by empirical models from literature or from experimental data. The response of the planar structure subject to a turbulent boundary layer excitation is then obtained from an ensemble average of the different realizations. The numerical technique is computationally efficient as it rapidly converges using a small number of realizations. To demonstrate the method, the vibrational responses of two panels with simply supported or clamped boundary conditions and excited by a turbulent flow are considered. In the case study comprising a plate with simply supported boundary conditions, an analytical solution is employed for verification of the method. For both cases studies, numerical results from the hybrid approach are compared with experimental data measured in two different anechoic wind tunnels.  相似文献   

14.
The presence of a turbulent premixed flame strongly influences the properties of the adjacent velocity boundary layer. This influence is studied here using a generic configuration where at atmospheric pressure turbulent premixed methane/air flames interact with a temperature stabilized wall. The experiment is optimized for well-defined boundary conditions and optical accessibility in the zone where the flame impinges at the wall. Laser based diagnostic methods are used to measure two components of the velocity field by particle image velocimetry simultaneously with the flame front position using laser induced fluorescence of the OH molecule. Two measurement planes are selected that are aligned perpendicularly to the surface of the wall. Based on this data, the flow field near the wall is analyzed by different methodologies using laboratory-fixed and flame-conditioned statistics, a quadrant splitting analysis of the Reynolds stresses and an evaluation of the production term of the turbulent kinetic energy. The results of chemically reactive cases are compared to their corresponding non-reactive flows for otherwise identical inflow conditions. In the zone of flame-wall interactions the boundary layer structure and its turbulence are dominated by the turbulent flame. Important features are that the flame compresses the boundary layer already upstream the location where the flame is finally quenched and that ejection and sweeps are no longer the dominant mechanisms as in non-reactive boundary layers. This experimental data may serve additionally as a database for model development for near wall reactive flows.  相似文献   

15.
论文根据堆本体内窄间隙同轴设备支承筒的结构特征、边界条件和窄间隙环腔内流体流速,将结构简化为一端固定一端自由的同轴圆柱壳,将圆柱壳内外的流体简化为无旋、无黏、不可压缩流体.同轴圆柱壳通过流体压力场实现耦合,其径向位移模态决定了窄间隙流体域的压力场,故采用级数形式的圆柱壳径向正交位移模态构建既满足一端固定一端自由边界条件...  相似文献   

16.
This work illustrates the possibilities of the Ensemble-Empirical-Mode-Decomposition (E-EMD) technique for a detailed analysis of the time and space characteristics of the wall-pressure fluctuations under a turbulent flow. Pressure fluctuations are measured with a linear microphone array, for the cases of a turbulent boundary layer and for a diffuse airborne acoustic field. The E-EMD technique is shown to be an efficient tool for representing the spatial scales of the turbulent fluctuations at each instant. In particular, this representation is obtained without any particular assumption or a priori information on the data (e.g. temporal or spatial stationarity of the wall pressure data is not required), and acts, when applied to wide-band turbulent signals, as a wavenumber filter. Finally, it is shown how, to some extent, the E-EMD technique can separate at each instant the acoustic (propagative) from the hydrodynamic (convective) energy.  相似文献   

17.
The differential pressure reading from a static hole pair is utilized for determination of the local wall shear stress. Both the hole diameter and forward-facing angle are varied to test the sensitivity of the device. The static hole pair in tested in a two-dimensional zero pressure gradient turbulent boundary layer on a smooth surface. The calibrating values for the local wall shear is determined from the universal scaling laws for the mean velocity profile in the inner part of the turbulent boundary layer. The static hole pair is found to be sensitive to imperfections in the manufacturing process, and needs an individual calibration in order to make accurate measurements of the local skin friction possible.  相似文献   

18.
We describe a simple method for estimating turbulent boundary layer wall friction using the fit of measured velocity data to a boundary layer model profile that extends the logarithmic profile all the way to the wall. Two models for the boundary layer profile are examined, the power-series interpolation scheme of Spalding and the Musker profile which is based on the eddy viscosity concept. The performance of the method is quantified using recent experimental data in zero pressure gradient flat-plate turbulent boundary layers, and favorable pressure gradient turbulent boundary layers in a pipe, for which independent measurements of wall shear are also available. Between the two model profiles tested, the Musker profile performs much better than the Spalding profile. Results show that the new procedure can provide highly accurate estimates of wall shear with a mean error of about 0.5% in friction velocity, or 1% in shear stress, an accuracy that is comparable to that from independent direct measurements of wall shear stress. An important advantage of the method is its ability to provide accurate estimates of wall shear not only based on many data points in a velocity profile but also very sparse data points in the velocity profile, including only a single data point such as that originating from a near-wall probe.  相似文献   

19.
IntroductionSoundradiationfromthedoubleshellswhicharethemainstructureofsubmarinehullsunderexcitationinfluidmediumisveryimportantforstudyingthesubmarinehidingtechnology .Forthevibrationcharacteristicofdoubleconcentricshells,ithasbeenstudiedontheoryande…  相似文献   

20.
The drag reduction characteristics of certain high molecular weight polymers have been studied by various investigators. Because of the polymer’s ability to reduce turbulent shear stress and dependence of the boundary layer wall pressure spectral amplitude on the shear stress, polymer has the potential to suppress noise and vibration caused by the boundary layer unsteady pressures. Compared to its effect on drag reduction, polymer additive effects on turbulent boundary layer (TBL) wall pressure fluctuations have received little attention. Kadykov and Lyamshev [Sov. Phys. Acoust. 16 (1970) 59], Greshilor et al. [Sov. Phys. Acoust. 21 (1975) 247] showed that drag reducing polymer additives do indeed reduce wall pressure fluctuations, but they have not established any scaling relationship which effectively collapse data. Some effort has been made by Timothy et al. [JASA 108 (1) (2000) 71] at Penn State University to develop a scaling relationship for TBL wall pressure fluctuations that are modified by adding drag reducing polymer to pure water flow. This paper presents a theoretical model based on the work of the Timothy et al. team at ARL, Penn State University. Through this model one can estimate, reduction in TBL flow induced noise and vibration for rigid smooth surfaces due to release of drag reducing polymers in boundary layer region. Using this theoretical model, flow noise as experienced by a typical flush mounted hydrophone has been estimated for a smooth wall plate as a function of polymer additive concentration. Effect of non-dimensionalisation of the wall pressure fluctuations frequency spectra with traditional outer, inner and mixed flow variables will also be addressed in the paper. The paper also covers a model based on molecular relaxation time in polymer additives which not only reduce drag but also flow induced noise up to certain polymer concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号