首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An improved near‐wall modeling for large‐eddy simulation using the immersed boundary method is proposed. It is shown in this study that the existing near‐wall modeling for the immersed boundary (IB) methods that imposes the velocity boundary condition at the IB node is not sufficient to enforce a correct wall shear stress at the IB node. A new method that imposes a shear stress condition through the modification of the subgrid scale‐eddy viscosity at the IB node is proposed. In this method, the subgrid eddy viscosity at the IB node is modified such that the viscous flux at the face adjacent to the IB node correctly approximates the total shear stress. The method is applied to simulate the fully developed turbulent flows in a plane channel and a circular pipe. It is demonstrated that the new method improves the prediction of the mean velocity and turbulence stresses in comparison with the existing wall modeling based solely on the velocity boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Certain modifications of three-equation turbulence models are proposed. They are intended for increasing the accuracy of the calculations of turbulent flows in nozzles with boundary layer separation and in supersonic jets with complicated shock wave structures. Basing on the idea of the inclusion of flow prehistory in terms of an additional relaxation equation for nonequilibrium turbulent viscosity we propose three modifications of the k-ω t model based on the k-ω model and a version of the k- ? t turbulence model. In these modifications we introduce an additional dependence of the nonequilibrium turbulent viscosity relaxation time on different physical parameters which can be important near the point of boundary layer separation from the nozzle wall, such as viscous effects and effects of large gradients of the mean velocity and the kinetic energy of turbulence (turbulent pressure). The comparison of the results of the calculations with the experimental data shows that all the proposed versions of the three-equation models make it possible to improve the accuracy of the calculations of turbulent flows in nozzles and jets.  相似文献   

5.
Oscillating boundary layer flow over an infinite flat plate at rest was simulated using the kkLω turbulence model for a Reynolds number range of 32  Reδ  10,000 ranging from fully laminar flow to fully turbulent flow. The kkLω model was validated by comparing the predictions with LES results and experimental results for intermittently turbulent and fully turbulent flow regimes. The good agreement obtained between the kkLω model prediction with the experimental and LES results indicate that the kkLω model is able to accurately simulate transient intermittently turbulent flow and as well as accurately predict the onset of turbulence for such oscillatory flows.  相似文献   

6.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder1 and followers2,3,4,5. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterised by Kolmogorov microscales. According t o this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become “Kolmogorov” eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As a n example, the concept is incorporated in the standard κ - εmodel which is then applied t o channel and boundary layer flows. Using appropriate boundary conditions (based on Kolmogorov behaviour of near-wall turbulence), there is no need for any wall-modification to the κ - ε equations (including model constants). Results compare very well with the DNS and experimental data.  相似文献   

8.
The results of a numerical modeling of flow past a configuration consisting of two wedges with swept leading edges, so mounted on a preliminary compression surface that the beveled wedge surfaces deflect the wedge-compressed flows counter to each other, are presented. The calculations are performed on the basis of the averaged Navier-Stokes equations, together with the SST k-ω turbulence model, at the freestream Mach number M = 6. For the configuration geometry chosen the flow pattern is characterized by an irregular interaction between the wedge-induced shocks in the plane of symmetry. These shocks also induce three-dimensional, quasi-conical separations of a turbulent boundary layer on the preliminary compression wedge. In the separation zones the flows are directed toward the plane of symmetry of the configuration and interact with one another with the formation of a typical central “bulged” separation flow zone.  相似文献   

9.
Reynolds-averaged Navier–Stokes prediction of shock wave/turbulent boundary layer interactions can yield significant error in terms of the size of the separation bubble. In many applications, this can alter the shock structure and the resulting surface properties. Shock-unsteadiness modification of Sinha et al. (Physics of Fluids, Vol.15, No.8, 2003) has shown potential in improving separation bubble prediction in compression corner flows. In this article, the modification is applied to oblique shock wave interacting with a turbulent boundary layer. The challenges involved in the implementation of the shock-unsteadiness correction in the presence of multiple shock waves and expansion fans are addressed in detail. The results show that a robust implementation of the model yields appreciable improvement over standard kω turbulence model predictions.  相似文献   

10.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A finite volume turbulence model for the resolution of the two‐dimensional shallow water equations with turbulent term is presented. After making a finite volume discretization of the depth‐averaged k–ε equations in conservative form, the qr equations, that give stability to the process, are obtained. Wall and inlet boundary conditions for the turbulent equations and wall conditions for the hydrodynamic equations are discussed. A comparison between the k–ε and qr models and some experimental results is made. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The applicability of a finite element-differential method to the computation of steady two-dimensional low-speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen for the Reynolds shear stress and turbulent heat flux is the K-? two-equation model. Calculations are extended up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A number of transformations are carried out and the assumed solutions at a longitudinal station are represented by complete cubic spline functions. In essence, the method converts the governing partial differential equations into a system of ordinary differential equations by a weighted residuals method and invokes an ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy and applicability of the k-? turbulence model are examined by comparing results of the computations with experimental data. The agreement is very good.  相似文献   

13.
In this work, an immersed boundary method, called the local domain-free discretization (DFD) method, is extended to large eddy simulation (LES) of turbulent flows. The discrete form of partial differential equations at an interior node may involve some nodes outside the solution domain. The flow variables at these exterior dependent nodes are evaluated via linear extrapolation along the direction normal to the wall. To alleviate the requirement of mesh resolution in the near-wall region, a wall model based on the turbulence boundary layer equations is introduced. The wall shear stress yielded by the wall model and the no-penetration condition are enforced at the immersed boundary to evaluate the velocity components at an exterior dependent node. For turbulence closure, a dynamic subgrid scale (SGS) model is adopted and the Lagrangian averaging procedure is used to compute the model coefficient. The SGS eddy viscosity at an exterior dependent node is set to be equal to that at the outer layer. To maintain the mass conservation near the immersed boundary, a mass source/sink term is added into the continuity equation. Numerical experiments on relatively coarse meshes with stationary or moving solid boundaries have been conducted to verify the ability of the present LES-DFD method. The predicted results agree well with the published experimental or numerical data.  相似文献   

14.
15.
Three-dimensional fully developed turbulent fluid flow and heat transfer in a square duct are numerically investigated with the author's anisotropic low-Reynolds-number k-ε turbulence model. Special attenton has been given to the regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, instead of the common wall function approach, the no-slip boundary condition at the wall is directly used. Velocity and temperature profiles are predicted for fully developed turbulent flows with constant wall temperature. The predicted variations of both local wall shear stress and local wall heat flux are shown to be in close agreement with available experimental data. The present paper also presents the budget of turbulent kinetic energy equation and the systematic evaluation for existing wall function forms. The commonly adopted wall function forms that are valid for two-dimensional flows are found to be inadequate for three-dimensional turbulent flows in a square duct.  相似文献   

16.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, the effects of flow turbulence intensity, temperature, particle sizes and impinging velocity on erosion by particle impact are demonstrated numerically. Underlying turbulent flow on an Eulerian frame is described by the compressible Reynolds averaged Navier–Stokes equations with a RNG k–ε turbulence model. The particle trajectories and particle–wall interactions are evaluated by a Eulerian–Lagrangian approach in a two‐way coupling system. An erosion model considering material weight removal from surfaces is used to predict erosive wear. Computational validation against measured data is demonstrated satisfactorily. The analysis of erosion shows that the prevention of erosion is enhanced by increasing the effects of flow temperature and turbulence intensity and reducing particle inertial momentum. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A generalized treatment for the wall boundary conditions relating to turbulent flows is developed that blends the integration to a solid wall with wall functions. The blending function ensures a smooth transition between the viscous and turbulent regions. An improved low Reynolds number k?ε model is coupled with the proposed compound wall treatment to determine the turbulence field. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and Schwarz' inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence. Computations with fine and coarse meshes of a few flow cases yield appreciably good agreement with the direct numerical simulation and experimental data. The method is recommended for computing the complex flows where computational grids cannot satisfy a priori the prerequisites of viscous/turbulence regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A control volume finite element method that uses a triangular grid has been applied for solving confined turbulent swirling flows. To treat the velocity-pressure coupling, the vorticity-streamfunction formulation has been used. For turbulence effects the k-? model has been adopted. Consistent with the use of wall functions in the near-wall regions, a boundary condition for the calculation of the vorticity at computational boundaries is proposed and used effectively. The discretized equations are obtained by making use of an exponential interpolation function. Its use has been beneficial in reducing numerical diffusion. Comparisons of the current predictions with available experimental and numerical data from the literature showed generally fair agreement.  相似文献   

20.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号