首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Some bioacousticians have used a single hydrophone to calculate the depth/range of phonating diving animals. The standard one-hydrophone localization method uses multipath transmissions (direct path, sea surface, and seafloor reflections) of the animal phonations as a substitute for a vertical hydrophone array. The standard method requires three multipath transmissions per phonation. Bioacousticians who study foraging sperm whales usually do not have the required amount of multipath transmissions. However, they usually detect accurately (using shallow hydrophones towed by research vessels) direct path transmissions and sea surface reflections of sperm whale phonations (clicks). Sperm whales emit a few thousand clicks per foraging dive, therefore researchers have this number of direct path transmissions and this number of sea surface reflections per dive. The author describes a Bayesian method to combine the information contained in those acoustic data plus visual observations. The author's tests using synthetic data show that the accurate estimation of the depth/range of sperm whales is possible using a single hydrophone and without using any seafloor reflections. This method could be used to study the behavior of sperm whales using a single hydrophone in any location no matter what the depth, the relief, or the constitution of the seafloor might be.  相似文献   

2.
3.
In 2002 and 2003, tagged sperm whales (Physeter macrocephalus) were experimentally exposed to airgun pulses in the Gulf of Mexico, with the tags providing acoustic recordings at measured ranges and depths. Ray trace and parabolic equation (PE) models provided information about sound propagation paths and accurately predicted time of arrival differences between multipath arrivals. With adequate environmental information, a broadband acoustic PE model predicted the relative levels of multipath arrivals recorded on the tagged whales. However, lack of array source signature data limited modeling of absolute received levels. Airguns produce energy primarily below 250 Hz, with spectrum levels about 20-40 dB lower at 1 kHz. Some arrivals recorded near the surface in 2002 had energy predominantly above 500 Hz; a surface duct in the 2002 sound speed profile helps explain this effect, and the beampattern of the source array also indicates an increased proportion of high-frequency sound at near-horizontal launch angles. These findings indicate that airguns sometimes expose animals to measurable sound energy above 250 Hz, and demonstrate the influences of source and environmental parameters on characteristics of received airgun pulses. The study also illustrates that on-axis source levels and simple geometric spreading inadequately describe airgun pulse propagation and the extent of exposure zones.  相似文献   

4.
The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.  相似文献   

5.
Matched-field processing (MFP) and global inversion techniques have been applied to vocalizations from four whales recorded on a 48-element tilted vertical array off the Channel Islands in 1996. Global inversions from selected whale calls using as few as eight elements extracted information about the surrounding ocean bottom composition, array shape, and the animal's position. These inversion results were then used to conduct straightforward MFP on other calls. The sediment sound-speed inversion estimates are consistent with those derived from sediment samples collected in the area. In general, most animals swam from the east to west, but one animal remained within approximately 500 m of its original position over 45 min. All whales vocalized between 10 and 40 m depth. Three acoustic sequences are discussed in detail: the first illustrating a match between an acoustic track and visual sighting, the second tracking two whales to ranges out to 8 km, and the final sequence demonstrating high-resolution dive profiles from an animal that changed its course to avoid the research platform FLIP (floating instrument platform). This last whale displayed an unusual diversity of signals that include three strong frequency-modulated (FM) downsweeps which contain possible signs of an internal resonance. The arrival of this same whale coincided with a sudden change in oceanographic conditions.  相似文献   

6.
A vertical array of five hydrophones was used to measure the acoustic field in the vertical plane of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of at least 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at a depth of 35 m. An eight-channel TASCAM recorder with a bandwidth of 24 kHz was used to record the hydrophone signals. The location (distance and depth) of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 151 and 173 dB re 1 microPa. One of the purposes of this study was to estimate potential sound exposure of nearby conspecifics. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicated that the sounds are projected in the horizontal direction despite the singer being canted head downward anywhere from about 25 degrees to 90 degrees. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.  相似文献   

7.
A simple passive acoustic monitoring (PAM) setup was used to localize and track beluga whales underwater in three dimensions (3D) in a fjord. In June 2009, beluga clicks were recorded from a cabled hydrophone array in a regularly frequented habitat in Eastern Canada. Beluga click energy was concentrated in the 30-50 kHz frequency band. The click trains detected on several hydrophones were localized from their time difference of arrivals. Cluster analysis linked localizations into tracks based on criteria of spatial and temporal proximity. At close ranges from the array, the localized click-train series allowed three-dimensional tracking of a beluga during its dive. Clicks within a train spanned a large range of durations, inter-click intervals, source levels and bandwidths. Buzzes sometimes terminated the trains. Repeated click packets were frequent. All click characteristics are consistent with oblique observations from the beam axis, and ordered variation of the source pattern during a train, likely resulting from a scan of angles from the beam axis, was observed before click trains indicated focusing of the echolocation clicks in one direction. The click-train series is interpreted as echolocation chasing for preys during a foraging dive. Results show that a simple PAM system can be configured to passively and effectively 3D track wild belugas and small odontocetes in their regularly frequented habitat.  相似文献   

8.
Sperm whales have depredated black cod (Anoplopoma fimbria) from demersal longlines in the Gulf of Alaska for decades, but the behavior has recently spread in intensity and geographic coverage. Over a three-year period 11 bioacoustic tags were attached to adult sperm whales off Southeast Alaska during both natural and depredation foraging conditions. Measurements of the animals' dive profiles and their acoustic behavior under both behavioral modes were examined for statistically significant differences. Two rough categories of depredation are identified: "deep" and "shallow." "Deep depredating" whales consistently surface within 500 m of a hauling fishing vessel, have maximum dive depths greater than 200 m, and display significantly different acoustic behavior than naturally foraging whales, with shorter inter-click intervals, occasional bouts of high "creak" rates, and fewer dives without creaks. "Shallow depredating" whales conduct dives that are much shorter, shallower, and more acoustically active than both the natural and deep depredating behaviors, with median creak rates three times that of natural levels. These results suggest that depredation efforts might be measured remotely with passive acoustic monitoring at close ranges.  相似文献   

9.
10.
The acoustic repertoire of killer whales (Orcinus orca) consists of pulsed calls and tonal sounds, called whistles. Although previous studies gave information on whistle parameters, no study has presented a detailed quantitative characterization of whistles from wild killer whales. Thus an interpretation of possible functions of whistles in killer whale underwater communication has been impossible so far. In this study acoustic parameters of whistles from groups of individually known killer whales were measured. Observations in the field indicate that whistles are close-range signals. The majority of whistles (90%) were tones with several harmonics with the main energy concentrated in the fundamental. The remainder were tones with enhanced second or higher harmonics and tones without harmonics. Whistles had an average bandwidth of 4.5 kHz, an average dominant frequency of 8.3 kHz, and an average duration of 1.8 s. The number of frequency modulations per whistle ranged between 0 and 71. The study indicates that whistles in wild killer whales serve a different function than whistles of other delphinids. Their structure makes whistles of killer whales suitable to function as close-range motivational sounds.  相似文献   

11.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

12.
Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one hydrophone to investigate the acoustic behavior of free-ranging sperm whales. They estimate whale pitch angles from the multipath distribution of click energy. They emphasize the close bond between the sperm whale's physical and acoustic activity, leading to the hypothesis that sperm whales might, like some small odontocetes, control click level and rhythm. An echolocation model estimating the range of the sperm whale's targets from the interclick interval is computed and tested during different stages of the whale's dive. Such a hypothesis on the echolocation process would indicate that sperm whales echolocate their prey layer when initiating their dives and follow a methodic technique when foraging.  相似文献   

13.
In this paper, an electrodynamic planar loudspeaker driven by a digital signal is experimentally discussed. The digital loudspeaker consists of 22 voice coils, 11 permanent magnets, a diaphragm with streamlined sections molded in plastic, and a suspension made of handmade Japanese paper between the diaphragm and the frame. First, the acoustic responses are affected by the arrangement of the voice coils, so an asymmetric arrangement is studied. This asymmetric arrangement is designed to obtain as flat a frequency response to an analog signal as possible. This arrangement is compared with a symmetric one and results show that the flatness of the frequency response around 1 kHz and 4 kHz is improved and that the sound reproduction band is from 40 Hz to 10 kHz. Second, to evaluate the acoustic responses to a digital signal, the digital loudspeaker is driven with a pulse code modulation signal. Results show that the digital loudspeaker can reproduce pure sound with a total harmonic distortion of less than 5% from 40 Hz to 10 kHz, exceeding this value only in a narrow frequency band near 4 kHz. This digital loudspeaker was demonstrated to have good linearity over its dynamic range of 84 dB.  相似文献   

14.
A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.  相似文献   

15.
Geoacoustic inversion work has typically been carried out at frequencies below 1 kHz, assuming flat, horizontally stratified bottom models. Despite the relevance to Navy sonar systems many of which operate at mid-frequencies (1-10 kHz), limited inversion work has been carried out in this frequency band. This paper is an effort to demonstrate the viability of geoacoustic inversion using bottom loss data between 2 and 5 kHz. The acoustic measurements were taken during the Shallow Water 2006 Experiment off the coast of New Jersey. A half-space bottom model, with three parameters density, compressional wave speed, and attenuation, was used for inversion by fitting the model to data in the least-square sense. Inverted sediment sound speed and attenuation were compared with direct measurements and with inversion results using different techniques carried out in SW06. Inverted results of the present work are consistent with other measurements, considering the known spatial variability in this area. The observations and modeling results demonstrate that forward scattering from topographical changes is important at mid-frequencies and should be taken into account in sound propagation predictions and geoacoustic inversion. To cope with fine-scale topographic variability, measurement technique such as averaging over tracks may be necessary.  相似文献   

16.
Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions.  相似文献   

17.
The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.  相似文献   

18.
高强混凝土单轴压缩声发射频率特征试验研究   总被引:2,自引:1,他引:2  
为研究高强混凝土破裂前声发射信号的频率特征,对C60、C70、C80高强混凝土试件进行单轴压缩下的高、低频双通道声发射试验,得到破裂过程的力学参数和声发射参数,探求高强混凝土不同加载阶段声发射信号频率的分布特征。研究表明,三种高强混凝土在峰值应力前,高、低频通道声发射信号均集中在特定的频段内;临近峰值应力时,高、低频通道的声发射信号频率向低频段移动,同时优势频段内的频率趋于分散,这可作为预测高强混凝土破坏的前兆信息。  相似文献   

19.
Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm.  相似文献   

20.
深海声影区稀疏时延估计与声源测距   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了深海声影区中经一次海底反射的多途声线到达垂直双水听器的时延差与声源位置的关系,提出了一种稀疏时延估计与声源测距方法。首先利用近海面布放的短间距垂直双水听器接收一定频带的声信号,然后计算接收信号的广义互相关函数,并利用频谱搬移和稀疏解卷积技术提取时延差,最后通过时延差匹配,估计水下声源的距离。仿真实验表明,在4300 m深海中,所提方法能够正确提取多途到达时延差,估计声影区内的声源距离。海试结果表明,当垂直接收孔径分别为21 m和30 m时,声源测距误差分别小于13.6%和8.1%。上述结果表明,所提出的时延估计方法可适应带宽较窄的接收信号,多途到达时延估计参数可用于实现声影区中的水下声源测距。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号