首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effect of the aminoglycoside (streptomycin) incorporation on the nanomechanical properties of pure dipalmitoylphosphatidylcholine (DPPC) vesicles was studied using atomic force microscope (AFM) on mica surface. The vesicles were prepared by extrusion and adsorbed on the mica surface. The forces, measured between an AFM tip and the vesicle, presented that the breakthrough of the tip into the vesicles occurred two times. Each breakthrough represented each penetration of the tip into each bilayer. Force data prior to the first breakthrough were fitted well with the Hertzian model to estimate Young's modulus and bending modulus of the vesicles. It was found that the Young's modulus and bending modulus were not varied with the incorporation of AGs (streptomycins) up to the 1:1 AG/DPPC vesicle system. This result may suggest that the AGs do not lead to the disruption of DPPC packing.  相似文献   

2.
Distribution of olfactory marker protein (OMP) on a tissue section of vomeronasal organ (VNO) was successfully measured by atomic force microscopy (AFM). Anti-OMP antibodies were covalently crosslinked with the tip of the AFM and were used as a probe to observe the distribution of OMP on a tissue section. First, force measurements were performed using a glass surface on which OMP was covalently immobilized to verify the success of tip modification. Clear differences of interaction forces were observed between a specific pair and the control experiments, indicating that the tip preparation succeeded. Next, distributions of OMP on the tissue section were observed by AFM and were compared with immunohistochemical observations. For large scale observation, a microbead was used as a probe in the AFM measurements. The results of the AFM measurements were well overlapped with that of immunohistochemistry, confirming the reliability of our method. A mapping of the AFM measurement with high resolution was also successfully obtained, which showed an advantage of the application of the AFM measurement in analysis of proteins on the tissue section.  相似文献   

3.
Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature of R≈50 nm and a glass sphere attached to the cantilever R = 5μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4×108 Pa in case of an experiment with a silicon nitride tip and 4×105 Pa in case of a glass sphere.  相似文献   

4.
Mechanical properties of protein crystals and aggregates depend on the conformational and structural properties of individual protein molecules as well as on the packing density and structure within solid materials. An atomic force microscopy (AFM)-based approach is developed to measure the elastic modulus of small protein crystals by nanoindentation and is applied to measure the elasticity of insulin crystals. The top face of the crystals deposited on mica substrates is identified as the (001) face. Insulin crystals exhibit a nearly elastic response during the compression cycle. The elastic modulus measured on the top face has asymmetric distribution with a significant width. This width is related to the uncertainty in the deflection sensitivity. A model that takes into account the distribution of the sensitivity values is used to correct the elastic modulus. Measurements performed in aqueous buffer on several crystals at different locations with three different AFM probes give a mean elastic modulus of 164 +/- 10 MPa. This value is close to the static elastic moduli of other protein crystals measured by different techniques that are usually measured in the range from 100 MPa to 1 GPa. The measured modulus of insulin crystals falls between the elastic modulus values of insulin amyloid fibrils measured previously at two orthogonal directions (a modulus of 14 MPa was measured by compressing the fibril in the direction perpendicular to the fibril axis, and a modulus of 3.3 GPa was measured in the direction along the fibril axis). This comparison indicates the heterogeneous structure of fibrils in the direction perpendicular to the fibril axis, with a packing density of the amyloid fibril core that is higher than the average packing density in insulin crystals. The mechanical wear of insulin crystals is detected during AFM measurements. In nanoindentation experiments on insulin crystal, the compressive load by the AFM tip ( approximately 1 nN, corresponding to a pressure of around 5 MPa) occasionally removes protein molecules from the top or the second top layer of insulin crystal in a sequential manner. The molecular model of this surface damage is proposed. In addition, the removal of the multiple layers of molecules is observed during the AC-mode imaging in aqueous buffer. The number of removed layers depends on the scan size.  相似文献   

5.
自从1986年发明原子力显微镜(AFM)以来,AFM已经发展成为应用最为广泛的扫描探针显微镜[1],它给材料科学家、化学家和生物学家提供了一个极为便利的研究手段.目前,原子力显微镜的空间分辨率已经达到原子尺度,同时又具有非常高的力的敏感性,可以探测10 pN的力,这就为研究单分子的性质提供了可能性[2,3].  相似文献   

6.
国立秋  王锐  徐化明  梁吉 《分析化学》2006,34(3):359-361
电弧法自制碳纳米管原子力显微镜针尖,对其末端进行功能化修饰,然后测量配体-受体之间的作用力。运用没有功能化修饰的碳纳米管针尖与修饰有亲和素分子的基底进行接触测量时,没有粘滞力出现;而运用末端修饰生物素分子的碳纳米管针尖测量时,有粘滞力产生。功能化的碳纳米管针尖直接测得的粘滞力均大约200pN,此值符合一对配体生物素和受体亲和素之间的作用力。这一结果很难用传统的针尖获得,功能化修饰的碳纳米管针尖能够克服传统针尖在力测量中的局限,在生物学和化学领域有着广泛的应用前景。  相似文献   

7.
Hydrophobic, methyl-terminated self-assembled monolayer (SAM) surfaces can be used to reduce friction. Among methyl-terminated SAMs, the frictional properties of alkanethiol SAMs and silane SAMs have been well-studied. In this research, we investigated friction of methyl-terminated n-hexatriacontane (C36) SAM and compared its friction properties with the alkanethiol and silane SAMs. Alkane SAM does not have an anchoring group. The alkane molecules stand on the surface by physical adsorption, which leads to a higher surface mobility of alkane molecules. We found that C36 SAM has a higher coefficient of friction than that of octadecyltrichlorosilane (OTS) silane. When an atomic force microscope (AFM) tip was swiped across the alkane SAM with a loading force, we found that the alkane SAM can withstand the tip loading pressure up to 0.48 GPa. Between 0.48 and 0.49Ga, the AFM tip partially penetrated the SAM. When the tip moved away, the deformed SAM healed and maintained the structural integrity. When the loading pressure was higher than 0.49 GPa, the alkane SAM was shaved into small pieces by the tip. In addition, we found that the molecular tilting of C36 molecules interacted with the tribological properties of the alkane SAM surface. On one hand, a higher loading force can push the rod-like alkane molecules to a higher tilting angle; on the other hand, a higher molecular tilting leads to a lower friction surface.  相似文献   

8.
We have developed an orientation control technique for polymer molecules utilizing contact-mode atomic force microscopy (AFM). In this technique, the molecular chains were directly modified by scanning an AFM cantilever tip in contact with the film surface at the temperature just below its melting point. We call this process “modification scan”. Here, we applied this technique to poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) thin films on graphite and glass. We prepared a 75-nm thick copolymer crystalline film on graphite whose lamellar plane was perpendicular to the substrate (edge-on), and also prepared a film of the same thickness on glass whose lamellar plane was parallel to the substrate (flat-on). After applying this technique on both films, molecular chains were stretched and aligned to the modification scan direction, and new edge-on crystals were obtained, whose lamellar planes were well-aligned perpendicular to the modification scan direction.  相似文献   

9.
傅里叶变换红外(FT-IR)光谱、表面压力-分子面积(π-A)等温线和原子力显微镜(AFM)结果表明,聚乙烯吡咯烷酮(PVP)与胆固醇分子(Chol)在溶液中和气/液界面上可通过氢键作用形成刷状的超分子聚合物PVP-Chol。当表面压力低于2.5 m N·m-1时,界面膜主要由富含胆固醇的微区与PVP-Chol纳米纤维构成的微区共存。在相对较低的表面压力下( < 2.5 m N·m-1),PVP-Chol微区形貌随界面膜压缩发生有序的变化:从最初的无规结构逐渐变为月牙形、心形和圆形结构;表面压超过2.5 m N·m-1后,圆形的PVP-Chol微区最终消失并转变为少量的纤维聚集体结构。值得注意的是,在1.0 m N·m-1之前,PVP-Chol纳米纤维高度随AFM成像过程中压电陶瓷外加电压的变化在1.8到4.3 nm之间出现了可逆转变,表明扫描探针针尖与样品之间的作用力可诱导超分子聚合物刷PVP-Chol发生从圆柱状到椭柱状的可逆结构转变。  相似文献   

10.
Collagen (type I from calf skin) adsorption on polystyrene (PS) and plasma-oxidized polystyrene (PSox) was studied, using a quartz crystal microbalance with energy dissipation measurements (QCM-D) and atomic force microscopy (AFM) in tapping mode. Radio-labeled collagen was used to measure the adsorbed amount and the ability of adsorbed collagen to exchange with molecules in the solution. The results show that the collagen adlayer consists of two parts: a dense and thin sheet in which fibrils are formed (directly observed by AFM) and an overlying thick layer (up to 200 nm) containing protruding molecules or bundles which are in very low concentration but modify noticeably the local viscosity. The thickness and viscosity of the semi-liquid adlayer both increase with adsorption time and collagen concentration. Fibril formation near the surface also increases with time and collagen concentration and occurs more readily on PS compared to PSox. Radiochemical measurements show that this may be related to the larger mobility of molecules adsorbed on PS, presumably owing to a smaller number of binding points.  相似文献   

11.
High-performance carbon nanofibers are highly dependent on the performance of their precursors, especially polyacrylonitrile (PAN).In this work, the copolymer of PAN (coPAN) was synthesized for electrospinning. A self-assembling set-up was used for the stretching of single coPAN nanofibers. FTIR and Raman spectroscopies were used to characterize the chemical structure of coPAN nanofibers. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to monitor the morphology of single coPAN nanofibers under different drawing times. Micro-tensile test was used to determine the mechanical properties of single coPAN nanofibers. The results indicated that the drawing led to an increase in degree of molecular orientation along the fiber axis from 0.656 to 0.808, tensile strength from 304 MPa to 595 MPa, and modulus from 3.1 GPa to 12.4 GPa. This research would provide fundamental information of high-performance electrospun coPAN nanofibers and offer opportunities for the preparation of high-performance carbon nanofibers.  相似文献   

12.
The annealing at 373 K of ultrastrong, gel‐spun polyethylene (PE) has been studied. At this temperature, the fibers show no significant shrinkage. Still, a significant decrease in the mechanical properties is observed. The fibers have been analyzed with differential scanning calorimetry (DSC), temperature‐modulated differential scanning calorimetry (TMDSC), atomic force microscopy (AFM), and small‐angle X‐ray scattering (SAXS). During the annealing, the glass transition of the intermediate phase is exceeded, as shown by DSC. When split for structure analysis by AFM, the annealed fibers undergo plastic deformation around the base fibrils instead of brittle fracture. The quasi‐isothermal TMDSC experiments are compared to the minor structural changes seen with SAXS and AFM. The loss of performance of the PE fibers at 373 K is suggested to be caused by the oriented intermediate phase, and not by major changes in the structure or morphology. The overall metastable, semicrystalline structure is shown by TMDSC to posses local regions that can melt reversibly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 403–417, 2003  相似文献   

13.
Effects of denaturation and association of collagen on adsorption behavior were studied in various pH and temperature T by a quartz crystal microbalance QCM. The surface nanostructure, the adhesion force F ad, and the local frictional coefficient μ of collagen were studied by an atomic force microscope AFM and a lateral force microscope LFM. Adsorptions of collagen were Langmuir type in the regions of pH 3.0–5.8 and T = 25–50 °C. With increasing pH and T, adsorption mass Γ increased, and adsorbed fibrils increased in width. At interface, the association of collagen molecules in solution enhanced the formation of fibrils. The results of F ad in the solution of pH 3.0 increased with increasing Γ and T but decreased in pH 5.8. The results of μ increased with increasing Γ and T, and those in pH 3.0, were much greater than those in pH 5.8. From comparing them with the results of bovine serum albumin and sodium hyaluronate monolayer, we concluded that nonelectrostatic interactions and the softness of collagen layer contribute primarily to F ad and μ.  相似文献   

14.
Atomic force microscope (AFM) imaging and nanoindentation measurements in water were used to probe the mechanical properties of retinal pigment epithelium melanosomes isolated from 14-year-old and 76-year-old donors. Topographic imaging reveals surface roughness similar to previous measurements on dry melanosomes. Force-indentation measurements show different types of responses that were catalogued into four different categories. In these measurements no permanent surface damage of melanosomes was observed as revealed by imaging before and after indentation measurements. The indentation measurements that exhibited nearly elastic responses were used to determine the Young's modulus of melanosomes. The average Young's modulus values are similar for 14-year-old and 76-year-old melanosomes with a somewhat narrower distribution for the 14-year-old sample. These elastic modulus values are considerably higher than the modulus of organelles with cytoplasm (<1 MPa) and approaching values of the modulus of protein crystals (approximately 100 MPa) indicating rather high packing density of biologic material in melanosomes. The width of the Young's modulus distributions is considerable spanning from few megapascals to few tens of megapascals indicating large heterogeneity in the structure. A fraction of the force curves cannot be described by the homogeneous elastic sample model; these force curves are consistent with approximately 10 nm structural heterogeneity in melanosomes. The approach-withdraw hysteresis indicates a significant viscoelasticity, particularly in the samples from the 14-year-old sample. Adhesion of the AFM probe was detected on approximately 3% and approximately 20% of the surface of 14-year-old and 76-year-old samples, respectively. In light of previous studies on these same melanosomes using photoelectron emission microscopy, this adhesion is attributed to the presence of lipofuscin on the surface of the melanosomes. This suggestion indicates that part of the difference in photochemical properties between the old and young melanosomes originates from surface lipofuscin.  相似文献   

15.
化学力显微镜针尖修饰技术研究新进展   总被引:5,自引:0,他引:5  
评述了化学力显微镜的新成果。对自组装单分子膜修饰扫描探针显微镜针尖,生物分子修饰原子力显微镜针尖,电化学方法修饰扫描隧道显微镜针尖,纳米碳管材料修饰原子力显微镜针尖等作了介绍。  相似文献   

16.
A new atomic force microscopy (AFM)‐based chemo‐mechanical tweezer has been developed that can measure mechanical properties of individual macromolecules in supramolecular assembly and reveal positions of azide‐containing polymers. A key feature of the new technology is the use of an AFM tip densely modified with 4‐dibenzocyclooctynols (chemo‐mechanical tweezer) that can react with multiple azide containing macromolecules of micelles to give triazole “clicked” compounds, which during retracting phases of AFM imaging are removed from the macromolecular assembly thereby providing a surface topographical image and positions of azide‐containing polymers. The force–distance curves gave mechanical properties of removal of individual molecules from a supramolecular assembly. The new chemo‐mechanical tweezer will make it possible to characterize molecular details of macromolecular assemblies thereby offering new avenues to tailor properties of such assemblies.  相似文献   

17.
Sonicated small unilamellar egg yolk phosphatidylcholine (EggPC) vesicles were investigated using atomic force microscopy (AFM) imaging and force measurements. Three different topographies (convex, planar, and concave shape) of the EggPC vesicles on the mica surface were observed by tapping mode in fluid, respectively. It was found that the topography change of the vesicles could be attributed to the interaction force between the AFM tip and vesicles. Force curves between an AFM tip and an unruptured vesicle were obtained in contact mode. During approach, two breaks corresponding to the abrupt penetration of upper and lower bilayer of vesicle were exhibited in the force curve. Both breaks spanned a distance of around 4 nm close to the EggPC bilayer thickness. Based on Hertz analysis of AFM approach force curves, the Young's modulus (E) and the bending modulus (kc) for pure EggPC vesicles were measured to be (1.97 +/- 0.75) x 10(6)Pa and (0.21 +/- 0.08) x 10(-19)J, respectively. The results show that the AFM can be used to obtain good images of intact and deformed vesicles by tapping mode, as well as to probe the integrity and bilayer structure of the vesicles. AFM force curve compare favorably with other methods to measure mechanical properties of soft samples with higher spatial resolution.  相似文献   

18.
Elucidating the assembly mechanism of the collagen at interfaces is important. In this work, the structures of type I collagen molecules adsorbed on bare mica and on LB films of propanediyl-bis(dimethyloctadecylammonium bromide) transferred onto mica at zero surface pressure was characterized by AFM. On mica, the granular morphologies randomly distributed as elongated structures were observed, which were resulted from the interlacement of the adsorbed collagen molecules. On the LB films, the topographical evolution of the adsorbed collagen layers upon the increasing adsorption time was investigated. After 30 s, the collagen assembled into network-like structure composed of the interwoven fibrils, called as the first adlayer, which was attributed to its adsorption on the LB film by means of a limited number of contact points followed by the lateral association. One minute later, the second adlayer was observed on the top of the first adlayer. Up to 5 min, collagen layers, formed by inter-twisted fibrils, were observed. Under the same conditions after 1 min adsorption on LB film, the AFM image of the layer obtained in the diluted hydrochloric acid solution is analogous to the result of the sample dried in air, indicating that it is the LB film that leads to the formation of the network structure of collagen and the formation of the network structures of collagen layers is tentatively ascribed to the self-assembly of type I collagen molecules on LB film, not to the dewetting of the collagen solution during drying.  相似文献   

19.
钛基表面纳米羟基磷灰石涂层的电泳沉积   总被引:3,自引:0,他引:3  
陈菲  林昌健  王周成 《电化学》2005,11(1):67-71
应用沉淀法合成纳米羟基磷灰石,并以电泳沉积法在粗糙化的钛表面制备纳米结构的羟基磷灰石涂层.纳米涂层有利于保持羟基磷灰石的化学组成和结构,制备的涂层均匀并且无裂缝,烧结后涂层仍保持纳米结构,其烧结温度也明显降低。钛表面经化学处理后,可形成很多微孔和TiO2薄层,增强了涂层和基体之间的结合.涂层的结合力为 18±2. 5MPa,硬度和杨式模量分别为 32. 0和 2. 4GPa.  相似文献   

20.
Bao GW  Li SF 《Talanta》1998,45(4):751-757
Direct observation of tip shapes by atomic force microscopy (AFM) has been achieved using spike-like crystallites in ZnO thin films deposited on microscope glass slides by the hydrothermal deposition technique. Three types of AFM tips, e.g. standard Si(3)N(4) tips, a broken silicon supertip and a noncontact silicon tip were examined and the acquired images for these tips show that ZnO crystallites are good samples to image commonly used AFM tips. The most obvious characteristic of this method is that it is easy for every chemical laboratory to access.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号