首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiresponsive poly(N-isopropylacrylamide-co-methacrylic acid) microgels were synthesized by precipitation polymerization in aqueous medium. Then silver-poly(N-isopropylacrylamide-co-methacrylic acid) hybrid microgels were prepared by in-situ reduction of silver ions. Formation of microgels was confirmed by Fourier transform infrared spectroscopic analysis. pH and temperature sensitivity of microgel was studied by dynamic light scattering. Hydrodynamic radius of microgels decreases with increase in temperature at pH 8.20 and show volume phase transition temperature around 45°C. At pH 2.65, hydrodynamic radius decreases with increase in temperatures upto 35°C but further increase in temperature causes aggregation and microgel becomes unstable due to increase of hydrophobicity. With increase in pH of medium, the hydrodynamic radius of microgels increases sigmoidally. Formation of silver nanoparticles inside microgel and pH dependence of surface plasmon resonance wavelength of the hybrid microgels were investigated by ultraviolet-visible spectroscopy. The value of surface plasmon resonance band and absorbance associated with surface plasmon resonance band increases with increases in pH of the medium. The apparent rate constant of reduction of p-nitrophenol was found to be linearly dependent on volume of hybrid microgels used as catalyst. The system has a potential to be used as effective catalyst for rapid degradation of industrial pollutant.  相似文献   

2.
Hybrid microgels with reversibly changeable multiple brilliant color   总被引:1,自引:0,他引:1  
We report reversibly color changeable hybrid microgels that tune multiple brilliant colors due to interparticle interactions of SPR using several structured nanoparticles. The interparticle interactions were brought out using the thermosensitive swelling/deswelling property of microgel. We employ N-isopropylacrylamide (NIPAM) and glycidyl methacrylate (GMA) copolymerized microgels (NG microgels) as templates for in situ synthesis of Au nanoparticles. The seed Au nanoparticles could be stably grown by successive reduction of Au and Ag in the microgels. Interestingly, the hybrid microgels were able to exhibit multiple brilliant colors by attaching Au/Ag multiple core/shell bimetallic nanoparticles in the microgels, and the color change reversibility of each hybrid microgel was accomplished by adjusting the nanoparticles' sizes. Obtained microgels shown in this study will find important applications such as in biomedical and electronic devices.  相似文献   

3.
Copper sulfide‐poly(isopropylacrylamide‐co‐methacrylic acid) [CuS‐P(NIPAM‐co‐MAA)] hybrid microgels with patterned surface structures have been synthesized by means of the polymer microgel template technique. The results showed that the surface morphology of the hybrid microgels could be regulated by controlling the decomposition of thioacetamide (TAA) in an acidic medium. The rate of precipitation and the amount of metal sulfide significantly affect the surface structures of the hybrid microgels.  相似文献   

4.
Summary: Hybrid microgels functionalized with silver nanoparticles (AgNP) have been prepared and their physico‐chemical properties examined. Composite particles have been obtained by formation of AgNP in presence of poly[vinylcaprolactam‐co‐(acetoacetoxyethyl methacrylate)] (VCL/AAEM) microgel particles. It has been demonstrated that hybrid particles with different AgNP amounts can be prepared. Hybrid particles are sensitive to temperature and swelling, and collapse processes are reversible. Incorporation of AgNP leads to shrinkage of microgel template due to the partial immobilization of polymer chains on the microgel surface. As a consequence, gradual loss of temperature sensitivity is observed. Hybrid microgels form highly transparent well‐organized films on solid substrates, providing homogeneous distribution of AgNP in bulk material. Presence of AgNP increases considerably the thermal stability of composite films.

Schematic representation (left) and TEM image (right) of hybrid microgels containing silver nanoparticles (AgNP).  相似文献   


5.
In this paper, we report on the Ag nanoparticle-containing hybrid poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-PAA) microgels with pH- and thermoresponsive metal-enhanced fluorescence (MEF). The hybrid microgels were prepared by in situ reducing Ag salts to Ag nanoparticles in the PNIPAM-co-PAA microgels. According to the interaction distance-dependent nature of MEF effects, we can realize a controllable MEF effect by adjusting the average interaction distance between fluorophores and Ag nanoparticles due to the good stimuli-responsive swelling-shrinking behavior of the hybrid microgels. The results show that MEF effect can be well tuned in the pH region 2-12 as well as the temperature region of 20-50 °C. By this method, an enhanced fluorescence detection can possibly be manipulated by adjusting external stimuli such as pH and temperature.  相似文献   

6.
We describe the synthesis and properties of functional microgel particles based on poly(N-vinylcaprolactam-co-glycidyl methacrylate) (PVCL/PGMA) copolymer. A series of colloidally stable microgel particles with a range of glycidyl methacrylate content were prepared by surfactant-free heterophase polymerization in water. The microgel particles obtained had hydrodynamic radii between 250 and 350 nm and were fairly monodisperse in size; however, a broadening of the particle size distribution was observed for samples with a low GMA content. The PVCL/PGMA microgel particles exhibit thermally responsive reversible changes in diameter in water, and the swelling degree increased with the PVCL fraction in the copolymer structure. These microgels were then modified with photoluminescent europium-doped lanthanum fluoride nanoparticles (LaF3:Eu-AEP) through reaction of the 2-aminoethyl phosphate surface ligands with epoxy groups present in the microgel. These hybrid microgels were colloidally stable and thermally responsive in aqueous solution.  相似文献   

7.
Graphical Abstract: A doubly responsive microgel with core shell shape was prepared by seed polymerization. The electrical properties were characterized. The latex stability was evaluated and discussed according to the colloid theory.

A core-shell microgel of poly(N-isopropylacylamide-co-methacrylic acid) was prepared by seeded polymerization. Dynamic light scattering measurements indicated that the microgel had a narrow size distribution. Zeta potential decreased gradually with increasing ionic strength, and when salinity reached a certain concentration the surface charge was almost screened out. Further addition of salt led to the shrinking and final flocculation. For increasing temperature, the zeta potential under higher ionic strength exhibited an abrupt change for trending to zero. Total interaction energy between particles was calculated with colloid theory. Meanwhile, thermal stability was evaluated and interpreted the experimental phenomenons.  相似文献   

8.
The poly(methyl methacrylate/butyl acrylate/acrylic acid) [P(MMA/BA/AA)] and poly (styrene/butyl acrylate/acrylic acid) [P(St/BA/AA)] latexes were synthesized using the emulsifier octylphenol polyoxyethylene(10) ether (OP-10) and ammonium sulfate allyloxy nonylphenoxy poly(ethyleneoxy)(10) ether(DNS-86). The optimum amount of OP-10 and DNS-86 was 1.5% and 2.5% respectively. The P(MMA/BA/AA) and P(St/BA/AA) latex containing 1.5% OP-10 or 2.5% DNS-86 were blended pairwise. The performances of latex blends and parent latexes as a function of emulsifiers content in parent latexes were determined. The results indicated that the stability of latex blends is favorable, and particle size distribution was more uniform and thermal stability was improved after blending.  相似文献   

9.
In the present study we report a facile and reproducible method of preparing magnetic thermosensitive hybrid material based on P(NIPAM) microgels covered with gamma-Fe2O3 nanoparticles of 6-nm size. The iron oxide nanoparticles provided magnetic response to the microgels. In addition, the presence of the magnetic nanoparticles on the microgels altered their swelling behavior and shifted their volume phase transition temperature to higher values. In particular, for inorganic shells with 18% (w/w) of magnetic nanoparticles the volume phase transition of the microgels was shifted from 36 to 40 degrees C. In contrast, for shells consisting of 38% (w/w) magnetic nanoparticles the volume phase transition of the microgels was almost blocked, thus indicating that the microgel thermal response was strongly affected by the presence of the inorganic nanoparticles. The synthesized thermosensitive magnetic microgels are envisaged to be ideal for potential applications as thermosensitive targeted drug delivery systems.  相似文献   

10.
A series of W/O/W or O/W/O emulsion stabilized solely by two different types of solid nanoparticles were prepared by a two-step method. We explored the option of particular emulsifiers for the multiple Pickering emulsions, and a variety of nanoparticles (silica, iron oxide, and clay) only differing in their wettability was used. The primary W/O emulsion was obtained by the hydrophobic nanoparticles, and then the hydrophilic nanoparticles were used as emulsifier in the secondary emulsification to prepare the W/O/W emulsion. In a similar way, the primary O/W emulsion of the O/W/O emulsion was stabilized by the hydrophilic nanoparticles, while the secondary emulsification to prepare the O/W/O emulsion was effected with the hydrophobic nanoparticles. The resultant multiple Pickering emulsion was stable to coalescence for more than 3 months, except the W/O/W emulsions of which the secondary emulsion stabilized by clay nanoparticles became a simple O/W emulsion in a day after preparation. Moreover, the temperature and pH sensitive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NIPAm-co-MAA)) microgels were introduced as an emulsifier for the secondary emulsification to obtain the stimulus-responsive multiple W/O/W emulsion. Such microgel-stabilized multiple emulsions could realize the efficient controlled release of water-soluble dye, Rhodamine B (RB) on demand in a multiple-emulsion delivery system.   相似文献   

11.
The incorporation of metal oxide nanoparticles into microgels forming hybrid systems gives additional functionalities to the system and widens the field of potential application in biomedicine, biotechnology, and other fields. In particular, there have been very few investigations regarding UCST-like hybrid microgels. In connection with this, we report the preparation of UCST-like hybrid microgels of magnetite nanoparticles (Fe(3)O(4)) encapsulated in poly(acrylamide-acrylic acid) microgel matrix via an inverse emulsion polymerization method. The key factor in the preparation of hybrid microgels is the need to divide in two the aqueous phase of the emulsion and feed them separately in order to avoid the aggregation of magnetic nanoparticles prior to polymerization reaction. The morphology, size, and spherical shape of hybrid microgels are determined by scanning electron microscopy. The encapsulation of magnetite nanoparticles within the polymer matrix is confirmed by transmission electron microscopy. Dynamic light scattering is employed to study both the swelling UCST-like behavior and the surface charge of the hybrid microgels. Swelling measurements confirm that the incorporation of magnetite does not affect the thermosensitivity of the system. In order to highlight the rheological behavior that can affect the final potential applications of these hybrid systems, a deep study of the viscoelastic properties is carried out by means of an oscillatory rheometer. The dependence of G' and G' of the microgel dispersions with the frequency suggests a gel-like behavior and hence the occurrence of structural organization. In order to understand this structure formation and the influence of the magnetite in the interaction between hybrid microgels, scaling theory was applied. In terms of rheology, the addition of magnetite leads to a change in the interaction between hybrid microgels giving rise to an increase in the elasticity of the system.  相似文献   

12.
Temperature-sensitive hybrid microgels with magnetic properties   总被引:4,自引:0,他引:4  
In the present paper, we report the preparation of hybrid temperature-sensitive microgels which include magnetite nanoparticles in their structure. Polymeric microgels have been prepared by surfactant-free emulsion copolymerization of acetoacetoxyethyl methacrylate (AAEM) and N-vinylcaprolactam (VCL) in water with a water-soluble azo-initiator. The obtained microgels possess a low critical solution temperature (LCST) in water solutions, with a rapid decrease of the particle size being observed at elevated temperatures. Magnetite was deposited directly into microgels, leading to the formation of composite particles which combine both temperature-sensitive and magnetic properties. The influence of magnetite load on microgel size, morphology, swelling-deswelling behavior, and stability is discussed.  相似文献   

13.
负载纳米银复合微球制备及其催化性能   总被引:1,自引:0,他引:1  
以具有温度和pH双重敏感性能的N-异丙基丙烯酰胺(NIPAM)共聚丙烯酸(AA) P(NIPAM-co-AA)高分子微凝胶为模板, 以乙醇为还原剂, 原位还原得到负载纳米银的微米尺度Ag/P(NIPAM-co-AA)复合微凝胶材料. 通过扫描电子显微镜(SEM)、X射线衍射(XRD)仪和紫外-可见(UV-Vis)分光光度计等对复合材料的形貌、组成和催化性能进行表征. 研究结果表明, Ag/P(NIPAM-co-AA)复合微球具有均一的表面结构, 微凝胶的限域作用显著提高了纳米银的分散性和稳定性. 另外, Ag/P(NIPAM-co-AA)复合微球对对硝基苯酚(4-NP)的还原具有较好的催化活性, 且其催化活性与微凝胶网络结构的溶胀、收缩行为有一定关系, 即模板微凝胶的温敏特性可以实现对对硝基苯酚催化反应活性的调控作用.  相似文献   

14.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

15.
By utilizing the hydrolysis and condensation of the methoxysilyl groups, thermo-sensitive organic/inorganic hybrid poly[ N-isopropylacrylamide- co-3-(trimethoxysilyl)propylmethacrylate] [P(NIPAm- co-TMSPMA)] microgels were successfully prepared via two different methods without addition of any surfactant. First, the microgels were obtained by a two-step method; that is, the linear copolymer P(NIPAm- co-TMSPMA) was first synthesized by free radical copolymerization, and the aqueous solution of the copolymer was then heated above its low critical solution temperature (LCST) to give colloid particles, which were subsequently cross-linked via the hydrolysis and condensation of the methoxysilyl groups to form the microgels. Second, the microgels were also prepared via conventional surfactant-free emulsion polymerization (SFEP) of the monomers NIPAm and TMSPMA. TMSPMA can act as the cross-linkable monomer. No surfactant was involved in the preparation of the hybrid microgels. The obtained microgels were rather spherical and exhibited reversible thermo-sensitive behavior. The size, morphology, swellability, and phase transition behavior of the microgels were dependent on the initial copolymer or monomer concentration, preparation temperature, and the content of TMSPMA. The size of microgels obtained by SFEP was found to be more uniform than that by the two-step method. The hybrid microgels obtained by these two methods had more homogeneous microstructures than those prepared via conventional emulsion polymerization with chemical cross-linker N, N'-methylene-bisacrylamide.  相似文献   

16.
The interaction between carboxylic acid-stabilised gold nanoparticles (AuNP) and pH-responsive microgels is shown. The microgel particles are a copolymer of N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM). The microgel properties are presented by their hydrodynamic diameter and electrophoretic mobility in response to pH. These microgel particles are pH-responsive under neutral conditions decreasing in diameter beyond pH 7. The dispersion characteristics of AuNP adsorbed onto the microgel network are shown with respect to adsorbed amount and the pH-responsive properties of the AuNP. This data is presented between pH 3 and 6 where the microgel properties remain constant. Asymmetric adsorption of AuNP onto poly(DMAPMA-co-NIPAM) microgels is achieved by adsorption of nanoparticles, from the aqueous phase, onto microgel-stabilised oil-in-water emulsions. These asymmetrically modified microgels display very different dispersion behaviour, in response to pH, due to their dipolar nature.  相似文献   

17.
赵甲  刘立峰  张颖 《物理化学学报》2015,31(8):1549-1558
通过两步聚合法合成具有温度敏感性能的核-壳型聚(苯乙烯-N-异丙基丙烯酰胺)/N-异丙基丙烯酰胺共聚3-(甲基丙烯酰氧)丙基三甲氧基硅烷(P(St-NIPAM)/P(NIPAM-co-MPTMS))复合微凝胶材料.以经3-巯丙基-三甲氧基硅烷(MPS)表面修饰的复合微凝胶为载体,乙醇为还原剂,在温和条件下控制性还原制备纳米银微粒.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外(FT-IR)光谱仪、X-射线光电子能谱(XPS)、X射线衍射(XRD)仪、热分析(TGA)和紫外-可见(UV-Vis)分光光度计等手段对P(St-NIPAM)/P(NIPAM-co-MPTMS)-(SH)Ag复合微凝胶的结构、组成和性质进行表征.同时,以硼氢化钠还原对硝基苯酚为模型反应,对该复合材料催化还原性能进行了评价.结果表明,载体含有巯基的有机-无机杂化网络结构的限域作用使原位合成的纳米银微粒的分散性较好.载体微凝胶壳层链节中无机组分MPTMS的引入在一定程度上降低了复合凝胶温敏性,但复合凝胶仍表现出催化还原反应的温敏性调控和良好的催化活性.以上实验结果与温敏性PNIPAM链节被无机网络分隔而有利于反应传质及壳层巯基对原位纳米银形成尺寸和空间分布的有效控制有关.本研究对功能性金属纳米催化复合材料的研究具有积极借鉴意义.  相似文献   

18.
Hybrid microgels photoresponsive in the near-infrared spectral range   总被引:4,自引:0,他引:4  
We report for the first time a photothermally responsive composite material based on polymer microgel particles doped with gold nanorods. We used the dependence of the longitudinal surface plasmon of the gold nanorods on their aspect ratio to synthesize nanoparticles with strong absorption in the near-IR spectral range (in the "water window"). The nanoparticles were incorporated in the interior of temperature-responsive poly(N-isopropylacrylamide-acrylic acid) microgels. Upon irradiation at lambda = 810 nm, hybrid microgel particles doped with Au nanorods underwent a strong deswelling phase transition. These photothermally responsive microgels can be used to carry and release small molecules (e.g., small protein molecules and drugs).  相似文献   

19.
阳离子化热响应微凝胶的合成及在二氧化硅矿化中的应用   总被引:1,自引:0,他引:1  
采用无皂乳液聚合技术,在亚甲基双丙烯酰胺(MBA)为交联剂的情况下,N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酰氧乙基三甲基氯化铵(DMC)发生共聚,生成具有阳离子功能化的热响应微凝胶poly-(NIPAM-co-DMC).TEM研究表明该微凝胶粒子的粒径约为200 nm左右,具有规则的球形形态.DLS和1H-NMR研究证实了微凝胶粒子的最低临界溶液温度(LCST)在34℃左右.进一步以此微凝胶为模板,在中性条件下,以四甲氧基硅烷(TMOS)为硅源,在此模板上仿生沉积S iO2,生成poly(NIPAM-co-DMC)/S iO2杂化纳米粒子.FTIR、TEM、1H-NMR及TGA等研究表明S iO2在聚合物模板上发生了沉积.能谱分析进一步证明了S iO2主要分布在杂化纳米粒子的壳层区域.另外,当矿化反应温度高于微凝胶的LCST值时,体系生成了具有明显核壳结构的异形杂化粒子.  相似文献   

20.
Ag nanoparticles (Ag NPs) embedded titanium dioxide (TiO2) nanofibers were fabricated by colloidal sol process, electrospinning, and calcination technique. Calcination of the electrospun nanofibers were heat treated at 600°C for 180 minutes in air atmosphere. X-ray diffraction patterns exhibited that the anatase phase and silver coexisted in the resulted Ag NPs/TiO2 nanofibers; transmission electron microscopy demonstrated Ag NPs well spread in the porous microstructure of composite fibers. The prepared nanofibers were utilized as photocatalyst for degradation of methyl orange. The degradation rate of methyl orange dye solution containing Ag/TiO2 composite nanofibers is 99% only after irradiation for 3 hours. It is proposed that these new Ag NPs/TiO2 composite nanofibers will have potential application in water pollution treatment.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号