首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

2.
Combining the versatility of electrospinning technique and hydrothermal growth of nanostructures enabled the fabrication of hierarchical CeO2/TiO2 nanofibrous mat. The as-prepared hierarchical heterostructure consisted of CeO2 nanowalls growing on the primary TiO2 nanofibers. Interestingly, not only were secondary CeO2 nanowalls successfully grown on TiO2 nanofibers substrates, but also the CeO2 nanowalls were uniformly distributed without aggregation on TiO2 nanofibers. The photocatalytic studies suggested that the CeO2/TiO2 heterostructures showed enhanced photocatalytic efficiency compared with bare TiO2 nanofibers under UV light irradiation.  相似文献   

3.
The photocatalytic activity of TiO2 nanofibers immobilized on quartz substrates was investigated by evaluating the decomposition of organic pollutants. TiO2 nanofibers were synthesized by electrospinning the Ti-precursor/polymer mixture solution, followed by hot-pressing for enhancing the adhesion of TiO2-nanofiber films to the substrates. TiO2 started to crystalize in the anatase form at 500 °C and reached the optimal photocatalytic anatase/rutile phase ratio of 70:30 at a calcination temperature of 600 °C. The TiO2-nanofiber film was demonstrated to be an efficient photocatalyst by ranitidine decomposition under UV illumination and was proven to have a comparable photocatalytic activity with the well-known Degussa P25 nanoparticulate photocatalyst and excellent recyclability during 10 cycles of photocatalytic operation, indicating no loss of TiO2 nanofibers during photocatalytic operations.  相似文献   

4.
The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible light photocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-TiO2 was converted from anatase to rutile at 700°C. Moreover, no N-doping was detected at the surface of P25-TiO2. There was no simply linear relationship between the visible light photocatalytic activity and the concentration of doped nitrogen, and visible light absorption. The visible light photocatalytic activity of N-doped P25-TiO2 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen vacancies (denoted as Vo·); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.  相似文献   

5.
Epitaxially grown titanium dioxide (TiO2) nanofibers embedding single crystalline TiO2 nanowires (NWs) were successfully fabricated by electropinning poly(vinyl pyrrolidone)/ethanol solutions mixed with hydrothermally synthesized TiO2 NWs and titanium isopropoxide precursors and subsequently calcinating the electrospun nanofibers. Utilizing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the morphologies of TiO2 NWs and nanofibers were investigated. High resolution TEM (HR-TEM) and selected area electron diffraction (SAED) allowed us to indentify the fact that, during the calcination process under the optimized condition, titanium isopropoxide precursors were epitaxially crystallized on the surface of single crystalline TiO2 NWs. Based on the X-ray diffraction (XRD) experiments, it was also realized that the crystalline structure of hydrothermally synthesized TiO2 NWs and epitaxially crystallized TiO2 nanofibers is anatase and that TiO2 composite nanofibers embedding TiO2 NWs exhibited a higher crystallinity than the pristine TiO2 nanofibers. Additionally, ultraviolet visible (UV–Vis) spectra of nanofibers indicated that optical properties of TiO2 nanofibers can be tuned by introducing the single crystalline TiO2 NWs.  相似文献   

6.
Influences of α-MnO2, β-MnO2, and δ-MnO2 on the photocatalytic activity of Degussa P-25 TiO2 have been investigated through the photocatalytic degradation of methyl orange. The TiO2 photocatalyst, before and after being contaminated by MnO2, was characterized by UV-visible diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The results showed that photocatalytic activity of TiO2 could be inhibited significantly or completely deactivated due to the presence of even a small amount of MnO2 particles. It was found that the poisoning effect varied with the crystal phases of MnO2 and the effect was in the order δ-MnO2 >α-MnO2 >β-MnO2. The poisoning effect was attributed to the formation of heterojunctions between MnO2 and TiO2 particles. The heterojunctions changed the chemical state of Ti4+ and O2− sites in the crystalline phase of TiO2. MnO2 in contact with TiO2 particles also broadens the band-gap of TiO2, which decreases UV absorption of TiO2. It can also create some deep impurity energy levels serving as photoelectron-photohole recombination center, which accelerates the electron-hole recombination. Supported by the National Natural Science Foundation of China (Grant No. 20477009) and the Natural Science Foundation of Hebei Province (Grant No. E2005000183)  相似文献   

7.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

8.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

9.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

10.
Titania–silica composite have been prepared using polyethylene glycol (PEG) with different molecular weights (M w), PEG20000, PEG10000, and PEG2000, as template in supercritical carbon dioxide (SC CO2). The composite precursors were dissolved in SC CO2 and impregnated into PEG templates using SC CO2 as swelling agent and carrier. After removing the template by calcination at suitable temperature, the titania–silica composite were obtained. The composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen sorption–desorption experiment. Photocatalytic activity of the samples has been investigated by photodegradation of methyl orange. Results indicate that there are many Si–O–Ti linkages in the TiO2/SiO2 composite; the PEG template has a significant influence on the structure of TiO2/SiO2. In addition, the TiO2/SiO2 prepared with PEG10000 exhibited high photocatalytic efficiency. So this work supplies a clue to control and obtain the TiO2/SiO2 composite with different photocatalytic reactivity with the aid of suitable PEG template in supercritical CO2.  相似文献   

11.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

12.
Recently, environmental disruption is proceeding on a global scale through the consumption of huge amounts of fossil fuels and the emission of various chemical substances. However, these substances resist bio-treatment. TiO2 generates electrons and holes by irradiation with light. Most organic micro-pollutants, including dioxins, are decomposed into carbon dioxide and water by the effect of the holes with high oxidative potential. By using such a photocatalytic reaction, various applications are feasible for environmental cleanup. In general, TiO2 powder has been utilized as photocatalyst, although TiO2 powder photocatalyst has several disadvantages: (1) it is difficult to handle, (2) photocatalytic reaction is slow and it takes a lot of time for treatment and (3) it is difficult to apply to plastics and textiles, because the photocatalyst decomposes them. We have developed a photocatalyst suitable for practical use and have developed high-activity photocatalysts such as TiO2 photocatalytic transparent film, photocatalytic silica-gel, apatite-coated TiO2 photocatalyst usable for plastics and textiles, photocatalytic paper, photocatalytic blue charcoal and photocatalytic oxygen scavenger. The application of these high-activity photocatalysts has been studied in deodorization, anti-bacterial, self-cleaning, anti-stain, water treatment, air purification such as photocatalytic decomposition of dioxins and VOC, and NO x removal. Now various photocatalytic articles using these new photocatalyst materials are on the market in Japan. Photocatalytic technology can create many valuable products for environmental use all over the world.  相似文献   

13.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

14.
TiO2 photocatalysts were synthesized by a hydrothermal method from tetraisopropyl orthotitanate (TPOT) in the presence of NH4F with different NH4F/Ti molar ratios (0, 0.25, and 1). The formation of a well-crystallized anatase phase of TiO2 and the suppression of phase transition to rutile were observed, even at high calcination temperature, owing to the effects of NH4F. The TiO2 synthesized hydrothermally with NH4F exhibited absorption with a shift to the longer wavelengths of the visible-light region. The hydrothermally synthesized TiO2 with a moderate amount of NH4F exhibited high photocatalytic activity for the degradation of alcohol diluted in water under both UV-light and visible-light irradiations.  相似文献   

15.
ZnFe2O4 nanoparticles sensitized by C-modified TiO2 hybrids (ZnFe2O4–TiO2/C) were successfully prepared by a feasible method. The ZnFe2O4 nanoparticles were prepared by mechanical alloying and annealing. The residual organic compounds in the synthetic process of TiO2 were selected as the carbon source. The as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray fluorescence, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis) and N2 adsorption–desorption analysis. The photocatalytic activity of the photocatalysts was measured by degradation of methyl orange under ultraviolet (UV) light and simulated solar irradiation, respectively. The results show that the carbon did not enter the TiO2 lattice but adhered to the surface of TiO2. The photocatalytic activity of the as-prepared C-modified TiO2 (TiO2/C) improved both under UV and simulated solar light irradiation, but the improvement was not dramatic. Introduction of ZnFe2O4 into the TiO2/C could enhance the absorption spectrum range. The ZnFe2O4–TiO2/C hybrids exhibited a higher photocatalytic activity both than that of the pure TiO2 and TiO2/C under either UV or simulated solar light irradiation. The complex synergistic effect plays an important role in improving the photocatalytic performance of ZnFe2O4–TiO2/C composites. The optimum photocatalytic performance was obtained from the ZnFe2O4(0.8 wt%)–TiO2/C sample.  相似文献   

16.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

17.
La‐TiO2 nanofibers are prepared by a sol‐gel assisted electrospinning method. The structure and morphology of La‐TiO2 nanofibers are characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis shows that the weight percentage of anatase and rutile in the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C is about 8:2, which is similar to P‐25. The XRD data of La‐TiO2 nanofibers with different La content shows that La3+ dopant has a great inhibition on TiO2 phase transformation. The photocatalytic activity of the as‐prepared La‐TiO2 nanofibers is evaluated by photocatalytic decolorization of Methylene Blue (MB) aqueous solution. The results show that the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C exhibit high photocatalytic activity, indicating that 600 °C and 1.5 mol% are the appropriate calcination temperature and optimal molar ratio of La to Ti, respectively.  相似文献   

18.
B-doped TiO2 nanotubes (B/TiO2 NTs) were prepared by the combination of sol–gel process with hydrothermal treatment. The prepared catalysts were characterized by XRD, TEM and XPS. The photocatalytic activity of B/TiO2 NTs was evaluated through the photodegradation of aqueous methyl orange. The results demonstrated that the 1.5% B/TiO2 NTs calcined at 300 °C possessed the best photocatalytic activity. Compared with pure TiO2 nanotubes, the doping with B significantly enhanced the photocatalytic efficiency.  相似文献   

19.
In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.  相似文献   

20.
In this work, 3-methylthiophene (MeT) was electrochemically incorporated with nano- and mesoporous TiO2 films to form poly(3-methylthiophene) (PMeT)/TiO2 nanocomposite electrochromic electrodes. TiO2 films, which were previously coated on the ITO glass sheets through a well-established technique, were introduced to enhance the adhesion of the polymers to the substrates and thus increase the long-term stability of the devices. With this effort, the nanocomposite electrodes were found to retain up to 60% of their optical response after 3,500 deep and double potential steps and retain up to 50% of their electroactivity after 104 same steps, exhibiting enhanced long-term stability. Switching time and the maximum optical contrast (ΔT%) of the nanocomposite electrodes were found to be 0.6 s and 45%, respectively. Moreover, our work showed that electrochemically incorporating conductive polymers (CPs) with TiO2 mesoporous films was an effective method to form high-quality CP/TiO2 nanocomposite electrodes, which can be used widely in battery cathodes, photovoltaic cells, photocatalytic reaction, and photoelectrochromic cells and were supposed to enhance their performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号