首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The state of doping of fullerene peapods C60@SWCNT treated with K vapor was studied by in situ Raman spectroelectrochemistry. For all samples under study, a heavy chemical n doping was proved by the vanishing of the radial breathing mode and the downshift of tangential displacement mode. The K-treated peapods remain partly doped even if they are exposed to humid air. The Ag(2) mode of intratubular fullerene in K-doped peapods in contact with air was still redshifted as referred to its position in pristine peapods. Potassium inserted into the peapods is the reason for the air-insensitive residual doping, which can be removed only by electrochemical oxidation. This indicates the presence of two positions of potassium in doped sample.  相似文献   

2.
Raman and in situ Raman spectroelectrochemical studies of Dy3N@C80@SWCNT peapods have been carried out for the first time. The formation of peapods by the encapsulation of gaseous Dy3N@C80 has been confirmed by HR-TEM microscopy and by the successful transformation of Dy3N@C80@SWCNT into double-walled carbon nanotubes. The Raman spectra of the endohedral fullerene cluster changed dramatically in the interior of the single-walled carbon nanotube (SWCNT). The electrochemical charging of the peapod indicates a slight reversible attenuation of the Raman intensities of fullerene features during anodic doping. The results support the assignment of Raman bands to the Dy3N@C80 moiety inside a SWCNT.  相似文献   

3.
This review is focused on charge-transfer reactions at carbon nanotubes and fullerenes. The spectroelectrochemistry of fullerenes deals with the spin states of fullerenes, the role of mono-anions and the reactivity of higher charged states in C60. The optical (Vis-NIR) spectroelectrochemistry of single-walled carbon nanotubes (SWNTs) follows changes in the allowed optical transitions among the Van Hove singularities. The Raman spectroelectrochemistry of SWNT benefits from strong resonance enhancement of the Raman scattering. Here, both semiconducting and metallic SWNTs are analyzed using the radial breathing mode (RBM) and G-modes as well as the second order (D, G') and intermediate frequency modes. Raman spectroelectrochemistry of SWNT allows the addressing of index-identified tubes and even single isolated nanotubes. Optical and Raman spectroelectrochemistry of fullerene peapods, C60@SWNT and C70@SWNT indicates effective shielding of the intratubular fullerene (peas). The most striking effect in the spectroelectrochemistry of peapods is the so-called "anodic Raman enhancement" of intratubular C60. Double-walled carbon nanotubes (DWNTs) give a specific spectroscopic response in Vis-NIR spectroelectrochemistry for the inner and the outer tube. They are better distinguishable by Raman spectroelectrochemistry which allows a precise tracing of the specific doping response of outer/inner tubes.  相似文献   

4.
1-butyl-3-methylimidazolium tetrafluoroborate (an ionic liquid) is an advantageous electrolyte for the study of charge-transfer reactions at single-walled carbon nanotubes (SWCNTs) and fullerene peapods (C60@SWCNT). Compared to traditional electrolyte solutions, this medium offers a broader window of electrochemical potentials to be applied, and favorable optical properties for in situ Vis/NIR and Raman spectroelectrochemistry of nano-carbon species. The electrochemistry of both nanotubes and peapods is dominated by their capacitive double-layer charging. Vis/NIR spectroelectrochemistry confirms the charging-induced bleaching of transitions between Van Hove singularities. At high positive potentials, new optical transitions were activated in partly filled valence band. The bleaching of optical transitions is mirrored by the quenching of resonance Raman scattering in the region of tube-related modes. The Raman frequency of the tangential displacement mode of SWCNT shifts to blue upon both anodic and cathodic charging in the ionic liquid. The Raman modes of intratubular C60 exhibit a considerable intensity increase upon anodic doping of peapods.  相似文献   

5.
研究了单根(7,5)蛇形单壁碳纳米管的拉曼光谱特征,观察到了环呼吸振动峰(RBM)、环呼吸振动的倍频峰(2RBM)、介于中间频率的振动峰(IMF)、无规振动峰(D)、剪切振动峰(G)、中间频率振动峰(M)、剪切振动和环呼吸振动的和频峰(G+RBM)、面内横向光学声子和纵向声学声子的和频峰(iTOLA)、无规振动的二次共振峰(G′或者2D)以及其它一些归属不清楚的拉曼峰.不同激发波长和不同激发偏振拉曼光谱研究表明,这些拉曼光谱峰显示出了非常强的激发能量和激发偏振的选择性.  相似文献   

6.
We report on the monotonic Raman frequency shift and intensity variation when a laser spot moves along the same single-walled carbon nanotube (SWNT) for both the radial-breathing mode (RBM) and the G-band. Our substrates are Si wafers coated with thermal oxide, and trenches with widths of 1-80 mum are etched in the SiO2 by photolithography and reactive ion etching. SWNTs are grown by chemical vapor deposition and lie on top of the SiO2 and across the trenches. When the laser spot moves from the middle of the trench to the SiO2 region along the nanotube, we observe a clear upshift in the RBM and G-band frequencies and a decrease of intensity. The effect is more significant with large ( approximately 2 nm) diameter nanotubes and appears to be chirality dependent. These studies provide important information about environmental effects on single-walled carbon nanotube resonant Raman spectroscopy.  相似文献   

7.
The charge transfer induced lithiation of single-wall carbon nanotubes (SWNTs) was investigated by in situ monitoring by Raman spectroscopy as lithium was added incrementally to a dispersion of SWNTs in liquid ammonia. Charge transfer from liquid ammonia solvated lithium to the SWNTs led to intercalation of lithium into the SWNT ropes, as well as to the semi-covalent lithiation of the SWNTs. Raman spectra of the SWNTs recorded as lithium was added showed a 30 wavenumber downshift of the G band (1594 cm−1) with the concomitant appearance of a new peak at 1350 cm−1 that was assigned as the signature of the lithiated SWNTs. Addition of 1-iodododecane to the lithiated SWNTs resulted in the covalent attachment of dodecyl groups. The intercalation of lithium throughout the SWNT ropes led to complete dodecylation of all individual SWNTs.  相似文献   

8.
Transition metal oxides are regarded as promising anode materials for lithium‐ion batteries because of their high theoretical capacities compared with commercial graphite. Unfortunately, the implementation of such novel anodes is hampered by their large volume changes during the Li+ insertion and extraction process and their low electric conductivities. Herein, we report a specifically designed anode architecture to overcome such problems, that is, mesoporous peapod‐like Co3O4@carbon nanotube arrays, which are constructed through a controllable nanocasting process. Co3O4 nanoparticles are confined exclusively in the intratubular pores of the nanotube arrays. The pores between the nanotubes are open, and thus render the Co3O4 nanoparticles accessible for effective electrolyte diffusion. Moreover, the carbon nanotubes act as a conductive network. As a result, the peapod‐like Co3O4@carbon nanotube electrode shows a high specific capacity, excellent rate capacity, and very good cycling performance.  相似文献   

9.
Raman spectra of electrochemically charged single-wall carbon nanotubes (HiPco) were studied by five different laser photon energies between 1.56 and 1.92 eV. The bands of radial breathing modes (RBM) were assigned to defined chiralities by using the experimental Kataura plot. The particular (n,m) tubes exhibit different sensitivity to electrochemical doping, monitored as the attenuation of the RBM intensities. Tubes which are in good resonance with the exciting laser exhibit strong doping-induced drop of the RBM intensity. On the other hand, tubes whose optical transition energy is larger than the energy of an exciting photon show only small changes of their RBM intensities upon doping. This rule presents a tool for analysis of mixtures of single-walled carbon tubes of unknown chiralities. It also asks for a re-interpretation of some earlier results which were reported on the diameter-selectivity of doping. The radial breathing mode in strongly n- or p-doped nanotubes exhibited a blue-shift. A suggested interpretation follows from the charging-induced structural changes of SWCNTs bundles, which also includes a partial de-bundling of tube ropes.  相似文献   

10.
[11]Cycloparaphenylene ([11]CPP) selectively encapsulates La@C82 to form the shortest possible metallofullerene–carbon nanotube (CNT) peapod, La@C82?[11]CPP, in solution and in the solid state. Complexation in solution was affected by the polarity of the solvent and was 16 times stronger in the polar solvent nitrobenzene than in the nonpolar solvent 1,2‐dichlorobenzene. Electrochemical analysis revealed that the redox potentials of La@C82 were negatively shifted upon complexation from free La@C82. Furthermore, the shifts in the redox potentials increased with polarity of the solvent. These results are consistent with formation of a polar complex, (La@C82)δ??[11]CPPδ+, by partial electron transfer from [11]CPP to La@C82. This is the first observation of such an electronic interaction between a fullerene pea and CPP pod. Theoretical calculations also supported partial charge transfer (0.07) from [11]CPP to La@C82. The structure of the complex was unambiguously determined by X‐ray crystallographic analysis, which showed the La atom inside the C82 near the periphery of the [11]CPP. The dipole moment of La@C82 was projected toward the CPP pea, nearly perpendicular to the CPP axis. The position of the La atom and the direction of the dipole moment in La@C82?[11]CPP were significantly different from those observed in La@C82?CNT, thus indicating a difference in orientation of the fullerene peas between fullerene–CPP and fullerene–CNT peapods. These results highlight the importance of pea–pea interactions in determining the orientation of the metallofullerene in metallofullerene–CNT peapods.  相似文献   

11.
We studied the transition from the electrochemical double-layer charging regime to intercalative doping of bundled single-walled carbon nanotubes (SWNT) in KCl and HCl aqueous solution. For this purpose we used high doping levels by applying constant potentials above 1000 mV approaching and slightly exceeding the oxidation potential for Cl(-) ions. At each potential in situ Raman measurements of the radial breathing mode (RBM), the high-energy tangential mode (HEM), and the disorder-induced (D) mode were performed. Furthermore, the conductivity and reflectivity of a set of SWNT samples were measured as a function of doping and subsequently the samples were examined by X-ray photoelectron spectroscopy (XPS). From a comparative analysis of the results we conclude that above 1000 mV a significant penetration of chlorine species into the interstitial channels of the SWNT bundles and possible covalent functionalization take place.  相似文献   

12.
The interaction of single‐walled carbon nanotubes (SWCNTs) and α‐sexithiophene (6T) was studied by Raman spectroscopy and by in situ Raman spectroelectrochemistry. The encapsulation of 6T in SWCNT and its interaction causes a bleaching of its photoluminescence, and also small shifts of its Raman bands. The Raman features of the SWCNT with embedded 6T (6T‐peapods) change in both intensity and frequency compared to those of pristine SWCNT, which is a consequence of a change of the resonant condition. Electrochemical doping demonstrated that the electrode potential applied to the SWCNT wall causes changes in the embedded 6T. The effects of electrochemical charging on the Raman features of pristine SWCNT and 6T@SWCNT were compared. It is shown that the interaction of SWCNT with 6T also changes the electronic structure of SWCNT in its charged state. This change of electronic structure is demonstrated both for semiconducting and metallic tubes.  相似文献   

13.
豆荚型纳米材料C60@SWNTs的制备和表征   总被引:1,自引:0,他引:1  
通过气相扩散的方法将C60填入单壁碳纳米管(SWNTs),制备了豆荚型纳米材料C60@SWNTs,并利用高分辨电子显微镜(HRTEM)和拉曼光谱(Raman spectra)对其进行了表征.结果均证明C60以较高的比例填充入单壁碳纳米管中.HRTEM结果表明,填入单壁碳纳米管的C60之间的距离与面心立方C60晶体中C60之间的距离有细微的差别,说明C60分子与SWNTs间存在弱的范德华相互作用.此外,还观察到在电子束的照射下,C60在SWNT中两两聚合的现象.  相似文献   

14.
Double‐walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single‐walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin‐diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs–DWCNTs mixture.  相似文献   

15.
Here, we carried out Raman study on chemically doped single wall carbon nanotube (SWNT)/double-walled carbon nanotube (DWNT) mixed bucky-papers. Their highly different Raman responses (e.g., a large upshift of tangential mode of SWNT and no large changes in the frequencies of tangential mode assigned to the outer tubes of the DWNT) upon doping with the sulfuric acid could be used as a qualitative indicator of the purity of the DWNT samples with the concentration of its SWNTs contents.  相似文献   

16.
Raman studies of solutions of single-wall carbon nanotube salts   总被引:4,自引:0,他引:4  
Polyelectrolyte solutions of Na-doped single-wall carbon nanotube (SWNT) salts are studied by Raman spectroscopy. Their Raman signature is first compared to undoped SWNT suspensions and dry alkali-doped SWNT powders, and the results indicate that the nanotube solutions consist of heavily doped (charged) SWNT. Raman signature of doping is then used to monitor in situ the oxidation reaction of the nanotube salt solutions upon exposure to air and to an acceptor molecule (benzoquinone). The results indicate a direct charge-transfer reaction from the acceptor molecule to the SWNT, leading to their gradual charge neutralization and eventual precipitation in solution. The results are consistent with a simple redox titration process occurring at the thermodynamical equilibrium.  相似文献   

17.
Aqueous dispersions of fullerene C70-filled carbon nanotubes (C70@SWNTs or peapods) and empty single-walled carbon nanotubes (empty SWNTs) were prepared with the aid of trimethyl-(2-oxo-2-pyrene-1-yl-ethyl)-ammonium bromide (1), which is a carbon nanotube solubilizer. This is the first report describing the preparation and characterization of the transparent dispersion/dissolution of the peapods. The UV-vis-near-IR spectra of C70@SWNTs-1 and empty SWNTs-1 were almost identical. We found by means of transmission electron microscopy and atomic force microscopy that the empty SWNTs and C70-peapods form helical nanostructures in the shapes of rings, irregular rings, lassos, handcuffs, catenanes, pseudorotaxanes, and figure-eight structures. The mechanism of the superstructure formation has been discussed in relation to the unique characteristics of stiff polymer chains with the aid of an off-lattice Monte Carlo simulation.  相似文献   

18.
The effect of impurities on the properties of single-wall carbon nanotubes (SWNTs) was investigated with multiple analytical techniques. Charge transfer is believed to occur between the impurities and the SWNTs as observed by combining the Raman scattering and x-ray photoelectron measurements. The impurity condition (type and level) was found to strongly affect the electronic and vibrational properties of the SWNT. The metal catalysts in the impurity usually behave as electron donors, which can downshift the graphitic (G) band as well as the radial breathing mode frequencies. The low temperature air oxidation of as-prepared SWNT material usually upshifts the radial breathing mode Raman peaks to higher frequencies.  相似文献   

19.
The hollow inner spaces of single-wall carbon nanotubes (SWCNTs) can confine various types of molecules. Many remarkable phenomena have been observed inside SWCNTs while encapsulating organic molecules (peapods). However, a mixed electronic structure state of the surrounding SWCNTs has impeded a detailed understanding of the physical/chemical properties of peapods and their device applications. We present a single-chirality purification method for SWCNTs that can encapsulate organic molecules. A single-chiral state of (11,10) SWCNTs with a diameter of 1.44 nm, which is large enough for molecular encapsulation, was obtained after a two-step purification method: metal-semiconductor sorting and cesium-chloride sorting. The encapsulation of C(60) to the (11,10) SWCNTs was also succeeded, promising a route toward single-chirality peapod devices.  相似文献   

20.
We use near-field Raman imaging and spectroscopy to study localized vibrational modes along individual, single-walled carbon nanotubes (SWNTs) with a spatial resolution of 10-20 nm. Our approach relies on the enhanced field near a laser-irradiated gold tip which acts as the Raman excitation source. We find that for arc-discharge SWNTs, both the radial breathing mode (RBM) and intermediate frequency mode (IFM) are highly localized. We attribute such localization to local changes in the tube structure (n, m). In comparison, we observe no such localization of the Raman active modes in SWNTs grown by chemical vapor deposition (CVD). The direct comparison between arc-discharge and CVD-grown tubes allows us to rule out any artifacts induced by the supporting substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号