首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high current electron beam losses have been studied experimentally with 0.7 J, 40 fs, 6 1019 Wcm-2 laser pulses interacting with Al foils of thicknesses 10-200 μm. The fast electron beam characteristics and the foil temperature were measured by recording the intensity of the electromagnetic emission from the foils rear side at two different wavelengths in the optical domain, ≈407 nm (the second harmonic of the laser light) and ≈500 nm. The experimentally observed fast electron distribution contains two components: one relativistic tail made of very energetic (T h tail ≈ 10 MeV) and highly collimated (7° ± 3°) electrons, carrying a small amount of energy (less than 1% of the laser energy), and another, the bulk of the accelerated electrons, containing lower-energy (T h bulk=500 ± 100 keV) more divergent electrons (35 ± 5°), which transports about 35% of the laser energy. The relativistic component manifests itself by the coherent 2ω0 emission due to the modulation of the electron density in the interaction zone. The bulk component induces a strong target heating producing measurable yields of thermal emission from the foils rear side. Our data and modeling demonstrate two mechanisms of fast electron energy deposition: resistive heating due to the neutralizing return current and collisions of fast electrons with plasma electrons. The resistive mechanism is more important at shallow target depths, representing an heating rate of 100 eV per Joule of laser energy at 15 μm. Beyond that depth, because of the beam divergence, the incident current goes under 1012 Acm-2 and the collisional heating becomes more important than the resistive heating. The heating rate is of only 1.5 eV per Joule at 50 μm depth.  相似文献   

2.
The effect of induced transparency of thin Al foils radiatively heated by intense extreme ultraviolet (EVU) radiation has been observed. The radiation of the plasma of Z-pinches appearing under the compression of tungsten liners at the Angara-5-1 facility has been used as the radiation that heats the Al foil (peak illumination on the foil ~0.55 TW/cm2) and is transmitted through it. The photoabsorption has been studied in the formed aluminum plasma at temperatures of ~10–30 eV in the density range of ~1–20 mg/cm3 in the wavelength range of ~5–24 nm. Absorption lines of Al4+...7+ ions have been identified in the experimental spectrum. In addition, radiative gas-dynamic simulations of the foil heating and expansion have been performed taking into account radiation transfer processes.  相似文献   

3.
Photoionization of gazes by the far UV radiation of a laser produced plasma is observed. Maximum electronic number density is estimated to be 1013 cm−3 at 7 cm from the target. The energy of ionizing photons lies between 85 eV and 130 eV.  相似文献   

4.
Fundamental investigations of plasma diagnostics of a forward laser plasma acceleration employing laser–foil interactions were conducted for an Al-foil target irradiated with an Nd:YAG laser of 1 J/pulse with pulse width of 10 ns. Temporal evolutions of electron temperatures and densities were evaluated with electrostatic probes and spectroscopic diagnostics. From the results, it was shown that an average speed of ions in a forward direction was about 40 km/s. Also, it was shown that the plasma temperature and density were about 2.5–8 eV and 1010 cm−3, respectively.  相似文献   

5.
Aynisa Tursun 《中国物理 B》2021,30(11):115202-115202
An efficient scheme for generating ultrabright γ-rays from the interaction of an intense laser pulse with a near-critical-density plasma is studied by using the two-dimensional particle-in-cell simulation including quantum electrodynamic effects. We investigate the effects of target shape on γ-ray generation efficiency using three configurations of the solid foils attached behind the near-critical-density plasma: a flat foil without a channel (target 1), a flat foil with a channel (target 2), and a convex foil with a channel (target 3). When an intense laser propagates in a near-critical-density plasma, a large number of electrons are trapped and accelerated to GeV energy, and emit γ-rays via nonlinear betatron oscillation in the first stage. In the second stage, the accelerated electrons collide with the laser pulse reflected from the foil and emit high-energy, high-density γ-rays via nonlinear Compton scattering. The simulation results show that compared with the other two targets, target 3 affords better focusing of the laser field and electrons, which decreases the divergence angle of γ-photons. Consequently, denser and brighter γ-rays are emitted when target 3 is used. Specifically, a dense γ-ray pulse with a peak brightness of 4.6×1026 photons/s/mm2/mrad2/0.1%BW (at 100 MeV) and 1.8×1023 photons/s/mm2/mrad2/0.1%BW (at 2 GeV) are obtained at a laser intensity of 8.5×1022 W/cm2 when the plasma density is equal to the critical plasma density nc. In addition, for target 3, the effects of plasma channel length, foil curvature radius, laser polarization, and laser intensity on the γ-ray emission are discussed, and optimal values based on a series of simulations are proposed.  相似文献   

6.
The complicated shape of the cosmic ray spectrum recorded by giant arrays in the energy range 1017–1020 eV is analyzed. It is shown that in the energy region ∼1018–1019 eV the spectrum probably coincides with the injection spectrum whose exponent is equal approximately to 3.2–3.3. The flatter component in the energy region (3.2–5.0)×1019 eV is due to braking of extragalactic protons on primordial photons (the cosmic background radiation). At energies exceeding 3.2×1019 eV the spectrum does not have a blackbody cutoff. The possibility of determining the distances at which cosmic rays originate and investigating the evolution of their sources on the basis of ultrahigh-energy cosmic ray data is discussed. Zh. éksp. Teor. Fiz. 113, 12–20 (January 1998)  相似文献   

7.
The results of experiments devoted to studying the generation of MeV photons and protons in picosecond laser plasmas at a laser beam intensity of 1018 W/cm2 on Be, Ta, LiF and H7Li targets are presented. Nuclear reactions (γ, n) and (p, n) were used to detect MeV photons and protons. The number of MeV photons and protons generated in laser plasmas was found from the measured neutron yield. Possibilities of particle acceleration due to the formation of pinch structures in laser plasmas are discussed. Calculated and experimental results are compared.  相似文献   

8.
fs pulsed lasers at an intensity of the order of 1018 W/cm2, with a contrast of 10−5, were employed to irradiate thin foils to study the target-normal-sheath-acceleration (TNSA) regime. The forward ion acceleration was investigated using 1/11 µm thickness foils composed of a metallic sheet on which a thin reduced graphene oxide film with 10 nm thickness was deposited by single or both faces. The forward-accelerated ions were detected using SiC semiconductors connected in time-of-flight configuration. The use of intense and long pre-pulse generating the low contrast does not permit to accelerate protons above 1 MeV because it produces a pre-plasma destroying the foil, and the successive main laser pulse interacts with the expanding plasma and not with the overdense solid surface. Experimental results demonstrated that the maximum proton energies of about 700 keV and of 4.2 MeV carbon ions and higher were obtained under the condition of the optimal acceleration procedure. The measurements of ion energy and charge states confirm that the acceleration per charge state is measurable from the proton energy, confirming the Coulomb–Boltzmann-shifted theoretical model. However, heavy ions cannot be accelerated due to their mass and low velocity, which does not permit them to be subjected to the fast and high developed electric field driving the light-ion acceleration. The ion acceleration can be optimized based on the laser focal positioning and on the foil thickness, composition, and structure, as it will be presented and discussed.  相似文献   

9.
The nonequilibrium plasma generated by nanosecond laser pulse is characterized using a SiC detector connected in time-of-flight configuration to measure the radiations emitted from the plasma. Different metallic targets were irradiated by the pulsed laser at an intensity of 1010 W/cm2 and 200 mJ pulse energy. The SiC allows detecting ultraviolet radiations and soft X-rays, electrons, and ions. The obtained plasma has a temperature of the order of tens to hundreds eV depending on the atomic number of the irradiated target and ion accelerations of the order of 100 eV per charge state.  相似文献   

10.
Using a 60 nsec, 300 MW CO2 TEA laser reflection measurements from solid deuterium targets have been investigated. Energy, reflected and scattered pulse shape are recorded at various angles: 0°, 45°, 90°, 135°. Reflection, X-ray measurements and ion mean kinetic energy are correlated at the focussing lens position with respect to the target position. The maximum plasma temperature varies from 20 to 35 eV for incident laser fluxes ranging from 5 × 1010 up to 5 × 1011 W/cm2. The cut-off density inside the deuterium ice has been observed and located. In each case reflection has been found to be weak less than 5% for each direction. For the maximum fluxes X-ray energies greater than 0.5 keV have been observed.  相似文献   

11.
Recent study on optical-field-ionization collisional-excitation extreme-ultraviolet lasing of Ni-like krypton at 32.8 nm pumped by a 100-TW laser system with an optically preformed plasma waveguide is reported. By using a 9-mm-long pure krypton plasma waveguide fabricated with the axicon-ignitor-heater scheme, the 32.8-nm extreme-ultraviolet laser provided an average output of 1012 photons/pulse at pump energy of 1 J, more than one order of magnitude enhancement relative to the previous results with the same scheme at pump energy of 235 mJ. It is also found the far-field pattern of laser beams varies from a single peak profile at low pump energy to an annular profile at high pump energy due to over-ionization of krypton ions at the center of the plasma channel.  相似文献   

12.
Photoemission was observed when the samples were irradiated with photons in the energy range from 2.5 to 3.3 eV from a tunable dye laser with an intensity of 108Wcm?2. The emission shows a quadratic intensity dependence. The variation with angle of incidence and polarization is different for the two surfaces. The result obtained from the (1 1 0) surface is discussed with help of the band structure as a two-photon surface photoelectric effect.  相似文献   

13.
B K Sinha  N Gopi  S K Goel 《Pramana》1979,12(4):377-390
Experiments performed with a 50 MW — 60 nsec ruby laser to estimate the temperature of the plasma produced on the planar targets of carbon as well as polyethylene are reported. Temperatures were estimated by two foil ratio technique. The temperatures of carbon and polyethylene plasma show aφ 2/9 dependance on flux in the flux regime of 1010 W/cm2 to 5 × 1011 W/cm2. The comparatively slower dependance is explained on the basis of purely collisional absorption, the effect being enhanced due to relatively long duration of the laser pulses. Scaling laws of plasma temperature against laser flux obtained by different workers in different flux regimes have been analysed on the basis of collisional and non-collisional absorption.  相似文献   

14.
ABSTRACT

Particle in cell simulation was applied to fit the measurements of protons and ions acceleration obtained using an fs laser pulse irradiating a thin foil in target-normal-sheath-acceleration regime. The simulation code calculates the maximum electrical field generated in the rear side of the target driving the forward ions acceleration. The electron density versus time and space, and the plasma temperatures are evaluated using a medium contrast laser at an intensity of about 1019?Wcm?2. Proton acceleration above 10?MeV was experimentally measured using SiC detectors connected in time-of-flight configuration. A comparison between theoretical aspects and experimental data is reported and discussed.  相似文献   

15.
Radiation emission of silicon and aluminum plasmas produced by 40-ps laser pulses with peak intensity above 1014 W/cm2 was studied. High-resolution soft X-rayspectra of H-like and He-like ions were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the intercombination lines of He-like ions with the results of model calculations. Such comparisons gave average values of the electron number density Ne=(1-1.9)×1021 cm-3 and the electron temperature Te=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. The plasma size is about 100 μm. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π during the total decay period. PACS 41.50.+h; 52.25.Os; 52.50.Jm  相似文献   

16.
Aluminum and gold foils have been irradiated with 1.05-μm, 100-psec laser pulses at an intensity of 3 × 1014 W/cm2. A spatially resolved spectrum of XUV radiation from a rear-side plasma has been observed in the wavelength range from 10 to 100 Å. The spectral intensity for the Al foil decays exponentially with foil thickness and goes to zero at 3 μm. The intensity for the Au foil also decays exponentially up to 1 μm but remains almost constant from 1 to 6 μm. This result for the Au foil indicates that radiation heat conduction plays an important role in energy transport through high-Z plasmas.  相似文献   

17.
Experimental investigations on ablatively accelerated thin plastic foil targets irradiated by a 6J, 5 nsec Nd: glass laser pulse, were conducted using shadowgraphy technique. A 2 nsec, 0.53 μm probe pulse, derived from the main laser was used for recording the foil motion. It was observed that 6 μm plastic foils could be accelerated to a velocity of about 3 × 106 cm/sec for an incident laser intensity of 5 × 1013 W/cm2 and the corresponding ablation pressure was 0.4 Mbar. Ablation pressure (P) scaling against absorbed laser intensity (I a ) was slower (PI a 0.4 ) for a smaller laser focal spot (30 μm) as compared to the scaling (PI a 0.7 ) for a larger focal spot (500 μm). This result has been explained considering the loss due to lateral energy transport from the laser plasma interaction region.  相似文献   

18.
A new mechanism for heating the electron component of plasmas formed upon the application of a superintense ultrashort laser pulse to atomic clusters is proposed. Clusters considered here consist of deuterium atoms. Upon the emission of a large number of electrons, an irradiated cluster, which acquires a positive charge, explodes (Coulomb explosion). Deuterons that are ejected as the result of this possess high kinetic energies, so that collisions between them can result in 3He formation accompanied by neutron emission. The new mechanism of the heating of the electron plasma from clusters is based on the conjecture that, when an ionization electron is reflected from the inner surface of the cluster ion in the presence of a laser field, it predominantly absorbs (rather than emits) laser photons.  相似文献   

19.
This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.  相似文献   

20.
Results of experimental investigations of fast-proton production in a laser plasma are presented for the case where the intensity of laser radiation at the targets is 2 × 1018 W/cm2. Three processes of fast-proton acceleration in laser plasma are investigated: (1) the acceleration of protons from the front surface toward the laser pulse, (ii) the acceleration of protons from the front surface of the target toward its interior, and (iii) the acceleration of protons from the rear foil surface in the outward direction. The activation procedure and CR-39 tracker detectors featuring a set of various-thickness aluminum filters were used to record fast protons. It turned out that the proton-acceleration process is the most efficient in the case of proton acceleration from the rear foil surface in the outward direction. Experimental results revealed that about N p = 107 protons of energy in the region E p > 1.9 MeV that are accelerated from the target surface toward a laser ray, N p = 4× 107 protons of energy in the region E p > 1.9 MeV that are accelerated fromthe front surface of the target toward its interior, and N p = 4×108 protons of energy in the region E p > 1.9 MeV that are accelerated from the rear foil surface in the outward direction are generated at a laser-radiation intensity of 2 × 1018 W/cm2 at the surface of aluminum, copper, and titanium targets. Experimental investigations aimed at optimizing the process of proton acceleration from the rear surface of aluminum foils were performed by varying the foil thickness over the range between 1 and 100 μm. The results of these experiments showed that there is an optimum foil thickness of 10 μm, in which case protons of maximum energy 5 MeV are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号