首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystallization of poly(butylene terephthalate) (PBT) from moderately dilute solutions of PBT in a diglycidyl ether of bisphenol-A epoxy has been investigated. PBT dissolves in this epoxy approximately 35°C below its usual melting temperature of 227°C to form a one-phase solution. Cooling this solution below 165°C leads to rapid crystallization of the PBT. The resulting mixture of liquid epoxy and crystalline PBT has a low viscosity and contains highly birefringent, individual PBT spherulites. The PBT spherulites have a narrow size distribution and a high surface-to-volume ratio. These particles are suggested to arise from a rapid crystallization that follows liquid–liquid phase separation. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Poly(ethylene terephthalate) (PET) was rapidly crystallized through thermoreversible gelation in a liquid ethylene glycol oligomer or in epoxy resin. The solutions formed gel rapidly on cooling. Polarized light microscopy and small-angle light scattering showed that these gels contain large, regular PET spherulites. The gels may be formed by two consecutive processes: the phase separation and crystallization, and gelation by formation of a three-dimensional PET network in the oligomer solvents, where the nodes of the network are PET spherulites. The crystallinity of PET recovered from polymer/oligomer gels is near 72% measured by wide-angle X-ray diffraction method, which is about 20% higher than PET samples crystallized by solution crystallization in small molecule solvent, high temperature annealing, and stretching techniques. It takes only a few minutes to form the highly crystalline phase PET in the PET/oligomer system, and the crystallinity of the dried gel is independent of the concentration of the original solution. Excimer-fluoresence and Raman spectroscopic studies indicated that PET recovered from the gels are in an ordered state with few chain entanglements. The entanglement density of the recovered PET recovered from a 20 wt % solution in ethylene glycol oligomer is as low as that of freeze-extracted PET from a 0.5 wt % solution in phenol. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1219–1225, 1998  相似文献   

3.
The supermolecular structures of thermoreversible gels formed from either homogeneous or heterogeneous solutions were examined by scanning electron microscopy. The morphologies of gels of polyethylene and polystyrene of various tacticities were then related to the phase diagram of the polymer–solvent system. We confirmed the morphological findings of Aubert on isotactic polystyrene gels formed either above the binodal or inside the spinodal and extended his study to gels prepared within the metastable region of the phase diagram. For polystyrenes and polyethylene, the morphology of the gels formed inside the coexistence curve differs markedly from that of gels formed outside. Inside the binodal, gels of polyethylene and polystyrenes exhibit remarkable morphological similarities, indicating a common gelation mechanism, namely, liquid-liquid phase separation. Depending on the concentration, these gels exhibit either an open strut-like network structure or smooth spherical globules. The former is attributed to gelation inside the spinodal whereas the latter is believed to result from gelation in the metastable region. For crystalline polymers, gels formed inside the coexistence curve subsequently undergo crystallization within their polymer-rich phase. The morphology of isotactic polystyrene and polyethylene gels formed outside the binodal consists of overlapping lamellar structures, whereas that of atactic and epimerized polystyrene gels is characterized by a sheet-like structure, differentiating the crystallization-based mechanism from others. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Macromolecular aggregation during thermoreversible gelation in solutions of the helical polypeptide poly(γ-benzyl-L-glutamate) [PBLG] in benzyl alcohol [BA] were studied by small angle neutron and small angle X-ray scattering. Gelation is apparent as a large increase in the intensity scattered at low angles, signifying formation of a microfibrillar PBLG network. The aggregated phase in isotropic gels from semidilute solutions contains about 28% solvent. A periodic structure is observed when gelation is induced by rapid cooling to a low temperature, but not by slow cooling or gelation at a higher temperature. In gels from concentrated liquid crystal solutions, two crystalline structures are observed, depending on whether the solution is rapidly quenched and then annealed or slowly gelled at an elevated temperature. A phase diagram for the PBLG/BA system is presented and the observed microstructural transitions are rationalized in terms of a gelation mechanism involving a combination of liquid-liquid phase separation and crystallization in the form of polymer-solvent co-crystals.  相似文献   

5.
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-butylene adipate) (PBSA) are crystalline/crystalline polymer blends with PVDF being the high-T(m) component and PBSA being the low-T(m) component, respectively. PVDF/PBSA blends are miscible as shown by the decrease of crystallization peak temperature and melting point temperature of each component with increasing the other component content and the homogeneous melt. The low-T(m) component PBSA presents various confined crystalline morphologies due to the presence of the high-T(m) component PVDF crystals by changing blend composition and crystallization conditions in the blends. There are mainly three different types of crystalline morphologies for PBSA in its miscible blends with PVDF. First, crystallization of PBSA commenced in the interspherulitic regions of the PVDF spherulites and continued to develop inside them in the case of PVDF-rich blends under two-step crystallization conditions. Second, PBSA spherulites appeared first in the left space after the complete crystallization of PVDF, contacted and penetrated the PVDF spherulites by forming interpenetrated spherulites in the case of PVDF-poor blends under two-step crystallization condition. Third, PBSA spherulites nucleated and continued to grow inside the PVDF spherulites that had already filled the whole space during the quenching process in the case of PBSA-rich blends under one-step crystallization condition. The conditions of forming the various crystalline morphologies were discussed.  相似文献   

6.
The thermoreversible gelation of solutions of isotactic poly(methyl methacrylate) is investigated. Amorphous gels can be prepared in l-butanol by a combination of a liquid-liquid demixing with an upper critical demixing temperature and a glass transition. Annealing of the demixed solutions above their glass transition temperature TG, results in the formation of a crystalline gel. In oxylene, crystalline gels are formed by a liquid-liquid demixing with an lower critical demixing temperature and an annealing at room temperature. Very fast gelation is observed to occur far below room temperature in solvents like 2-butanone.  相似文献   

7.
The morphology of poly(butylene terephthalate) (PBT) crystallized from the melt at various temperatures was studied by small-angle light scattering, polarizing microscopy, and wide-angle x-ray diffraction. Spherulites with a maltese cross at 45° to the polars formed at lower temperatures while spherulites having an apparently higher melting point with a maltese cross along the polars (0°–90°) formed at higher temperatures. The spherulite size and crystallinity increased with increasing crystallization temperature. The Hv scattering patterns arising from the spherulites formed at lower temperature showed intensity maxima at azimuthal angles of 0° and 90°, while those obtained at higher temperatures showed the more common 45° intensity maxima. Microtomed samples from molded PBT bars showed spherulites with a 45° maltese cross which changed to a 0°–90° maltese cross upon heating just prior to melting. The skin-core effect due to varying thermal histories in these molded bars was clearly observed. Solvent crystallized films contained positive 0°–90° spherulites. Some changes occurring upon uniaxial stretching of PBT films are also discussed.  相似文献   

8.
Liquid crystalline composite gels consisting of a low molecular mass gelator and a low molecular mass liquid crystal were prepared by two types of gelation method (continuous cooling and isothermal gelating), which provide different molecular self-assembling kinetics of the low molecular mass gelator as gelation proceeds. Optical microscopy and atomic force microscopy revealed that numerous fine strands of the one-dimensionally assembled low molecular mass gelators were formed in the composite gels for both the continuous cooling method and the isothermal gelating method. However, the thinner strands were more homogeneously dispersed in the isothermal gelation product at an appropriate temperature, than in the continuous cooling process. This difference in dispersion state of the strands was shown (by polarizing optical microscopy) to have a significant influence on the molecular alignment of the low molecular mass liquid crystal in the liquid crystalline composite gel. The electro-optical response and light scattering–transmitting switching, of the liquid crystalline composite gel in an applied electric field was extremely dependent on the morphology of the gelators. High contrast light switching was achieved for the composite prepared by isothermal gelation. The response time of electro-optical switching was less than 100?µs under 30?Vrms.  相似文献   

9.
Liquid crystalline composite gels consisting of a low molecular mass gelator and a low molecular mass liquid crystal were prepared by two types of gelation method (continuous cooling and isothermal gelating), which provide different molecular self-assembling kinetics of the low molecular mass gelator as gelation proceeds. Optical microscopy and atomic force microscopy revealed that numerous fine strands of the one-dimensionally assembled low molecular mass gelators were formed in the composite gels for both the continuous cooling method and the isothermal gelating method. However, the thinner strands were more homogeneously dispersed in the isothermal gelation product at an appropriate temperature, than in the continuous cooling process. This difference in dispersion state of the strands was shown (by polarizing optical microscopy) to have a significant influence on the molecular alignment of the low molecular mass liquid crystal in the liquid crystalline composite gel. The electro-optical response and light scattering-transmitting switching, of the liquid crystalline composite gel in an applied electric field was extremely dependent on the morphology of the gelators. High contrast light switching was achieved for the composite prepared by isothermal gelation. The response time of electro-optical switching was less than 100 µs under 30 Vrms.  相似文献   

10.
The gelation and gel-melting phenomena in semidilute isotropic solutions of poly(γ-benzyl-L -glutamate) (PBLG) in benzyl alcohol were studied by small-angle neutron scattering measurements, using a deuterated solvent, and by cryotransmission electron microscopy. The reversible gels are formed when the solution is cooled below the gelation temperature, and the gels melt upon heating. Hysteresis, of about 15°C, is observed between gelation and melting temperatures. In the isotropic solution, PBLG exists as isolated helices. Gelation is apparent as a large increase in the intensity scattered at low angles, signifying the heterogeneous microstructure of the gel. Direct visualization by electron microscopy of vitrified gel samples shows the formation of a microfibrillar network. The dimension of the observed microfibrils is about 10 nm. Upon melting, microstructural changes appear in a temperature range of about 10°C. The unique feature of the gel melting is that initially only the intensity in the mid-angle range decreases. This is interpreted as thickening of the microstructure due to melting of the thinner microfibrils. The final stage marks the melting of the thicker microfibrils. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Recent developments from 1997 to 2000 in hydrocolloid gels which consist of dispersed phase (polysaccharide or protein) and dispersing medium (water) are reviewed in the present paper. Gels and gelling processes of polysaccharides such as gellan gum, methylcellulose, xyloglucan, curdlan, konjac glucomannan and starch are described. Fluid gels and galactomannan gels prepared by freeze-thaw cycling are also described. Effects of pH and ionic strength on the gelation of proteins such as casein and β-lactoglobulin are described. Fractal treatment is introduced to study the structure–property relationship for globular protein gels. Gels formed by different hydrocolloids are also described briefly.  相似文献   

12.
通过冷却聚偏氟乙烯 (PVDF) 丙烯碳酸酯 (PC)或PVDF PC LiClO4的溶液 ,制备了数个聚合物凝胶 .实验表明 ,聚合物凝胶的凝胶化时间 (tgel)与凝胶温度、聚合物浓度有关 ,且强烈地依赖于体系中盐的浓度 ,因为盐会缩短体系的tgel.凝胶体系中LiClO4的存在提高了其凝胶熔融温度 (Tgm) ,LiClO4的含量越大 ,相应凝胶的Tgm 越高 .用DSC和落球法所测凝胶的Tgm 有较大的差别 .这说明凝胶中可能存在热稳定性好和热稳定性相对较差的两种不同结构部分 .FT IR的研究结果表明 ,凝胶电解质的各组成 (LiClO4,PC和PVDF)间存在较强的相互作用 .对含盐和不含盐的两类凝胶体系的对比研究表明 ,两者不同的凝胶化现象和Tgm 归因于盐与聚合物或溶剂间的络合作用  相似文献   

13.
Isothermal and nonisothermal spherulitic crystallization in even–odd and poly(ω-aminocarboxylic acids) has been studied for a range of fusion conditions and solidification temperatures. The variety of spherulites so formed are classified mainly by optical microscopy. It is found that polyamides with similar types of repeat units generally exhibit similar morphological features under corresponding crystallization conditions. The basic patterns are illustrated in the text. Changes in spherulitic birefringence with temperature are also discussed. In some cases, at temperatures not far below the polymer melting point, platelet-like crystalline aggregates are formed in thin film preparations. These platelets exhibit properties characteristic of single crystals.  相似文献   

14.
Gelation of solutions of poly(ethylene terephthalate-co-isophthalate) depends on chain structure, solvent, temperature, and concentration. Wide-angle x-ray scattering and differential scanning calorimeter experiments reveal the crystalline nature of the gel. The crystalline crosslinks, with a fringed micellar structure, are composed of terephthalate units. Orientation of the dried gels reveals the presence of crystallites with their largest dimension parallel or perpendicular to the chain axis. At high enough concentration of crystallizing units in the chain, folded-chain lamellar structures are also formed. Compared with the fringed micellar crystallization, the induction time for this crystallization is short. Melting of the folded-chain structures is very similar to the melting of pure poly(ethylene terephthalate). Because of the crystalline nature of this gelation, copolymers with only a small difference in composition can be fractionated according to the difference in micro-structure.  相似文献   

15.
J. Lub  V. Recaj  L. Puig  P. Forc  n  C. Luengo 《Liquid crystals》2004,31(12):1627-1637
The synthesis and photopolymerization of various liquid crystalline dioxetanes is described. The effects of the spacer length, structure of the mesogenic group and oxetane group on the liquid crystalline properties, polymerization behaviour and optical properties (birefringence) of the oriented and crosslinked network formed in photo-polymerization are discussed. Thermally stable films with birefringence values up to 0.13 can be formed from these materials. The dioxetanes show significantly lower polymerization shrinkage than do structurally related diacrylates.  相似文献   

16.
The morphologies of poly(L-lactic acid) (PLLA) spherulites,when crystallized within the pre-existed poly(oxymethylene)(POM) crystal frameworks,have been investigated.PLLA/POM blend is a melt-miscible crystalline/crystalline blend system.Owing to the lower melting point but much faster crystallization rate than PLLA,POM crystallized first upon cooling from the melt state and then melted first during the subsequent heating process in this blend system.Lamellar assembly of PLLA crystals within the pre-existed POM spherulitic frameworks was directly observed with the polarized light microscopy by selectively melting the POM frameworks.The investigation indicated that PLLA crystals fully replicated the spherulitic morphology and optical birefringence of the POM crystal frameworks,which was independent of Tc.On the other hand,POM could also duplicate the pre-existed PLLA morphologies.The result obtained provides us a possibility to design the lamellar assembly and crystal structures of polymer crystals in miscible crystalline/crystalline polymer blends.  相似文献   

17.
采用接枝聚合的方法,合成了一种新型聚硅氧烷类向列相液晶共聚物(LCP-H4),然后将LCP-H4与PP在一定工艺条件下密炼共混,得到了一系列的共混样品,采用WAXD、POM与DSC等研究了LCP-H4作为成核剂对PP样品结晶结构、形态与热性能的影响.结果表明,具有独特"液晶"性能的LCP-H4为PP结晶提供了更多的带自由能的晶核与较多的活性点,起到了异相成核的作用,既提高了PP的结晶速度、结晶温度和结晶度,又减小了球晶的尺寸,同时也改变了PP的结晶结构、形态及热力学与动力学,诱导出了β晶.此外,随着增加LCP-H4的含量及结晶温度,对应PP试样的β晶含量(Kβ)呈现先增加后降低的趋势,当LCP-H4含量为0.9%,在128℃等温结晶1h,对应成核PP的Kβ最大,为54%.  相似文献   

18.
In this article, we report on the rheological properties of agarose aqueous solutions and gels. Viscosity curves were determined for homogeneous agarose aqueous solutions at different temperatures (from 68 to 38 °C) to study the viscosity behavior as the systems undergo gelation. The gelation phenomenon of agarose solutions was also investigated by shear oscillation experiments and differential scanning calorimetry. The gelation and melting temperature as a function of agarose concentration were determined together with the gelation and melting enthalpies. The results obtained were interpreted using the two‐step model describing the gelation of agarose in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 322–328, 2008  相似文献   

19.
The thermal properties of solution-prepared blends of poly(butylene terephthalate) (PBT) and liquid crystalline poly(biphenyl-4,4′-ylene sebacate) (PB8) have been studied by differential scanning calorimetry (DSC). The smectic-to-isotropic (s → i) transition of the mesomorphic component is observed at temperatures slightly increasing with the PB8 content, in the 270–280°C range; on cooling, the mesophase formation (i → s transition) takes place at temperatures that decrease markedly with decreasing PB8 content. The temperatures of the crystal-to-smectic and smectic-to-crystal transitions of PB8 are almost invariant with blend composition. The melting and crystallization temperatures of the PBT phase decrease on increasing the content of the liquid crystalline component. These results, together with those of isothermal calorimetry of both the crystallization of the PBT component and the mesophase formation of the PB8 component of the blends, indicate that the two polymers are not immiscible in the isotropic state. In this latter state, however, the two polyesters undergo transesterification, which can be followed through changes in the DSC scans. The effect of the thermal history on the properties of the blends has been studied with particular attention. Both the dynamic and the isothermal calorimetric measurements provide evidence of an increase of the degree of crystallinity of PBT on addition of the liquid crystalline component up to about 35–50% by weight.  相似文献   

20.
Anisotropic growth of β-form crystals of isotactic polypropylene in type III and type IV spherulites has made possible microanalysis of the unit cell structure, optical properties, and crystal arrangement within the spherulites. Micro x-ray studies of the type III and type IV spherulites show that interspherulitic β-form crystals have a hexagonal unit cell with dimensions; a = 19.08 Å and c = 6.49 Å. The intrinsic refractive indices of these β-form crystals are 1.506 along the a axis and 1.536 along the c axis. The organization of the crystals within the spherulites and the optical properties of the spherulites are also quantitatively evaluated. Both the type III and type IV spherulites have the a axis of the crystal radial while the crystals rotate randomly around the type III spherulite radii and periodically around the type IV spherulite radii. The radial refractive index for both the type III and type IV spherulites has the same value of 1.496. The tangential refractive index of the type III spherulite has a constant value of 1.509; it varies periodically between a minimum of 1.496 and a maximum of 1.519 in the type IV spherulite. Microtechniques such as micro x-ray diffraction, interference microscopy, birefringence, and optical microscopy were required for acquisition of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号