首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π–π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm−1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.  相似文献   

2.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials which are completely constructed from organic building blocks through robust covalent bonds. High surface areas, compositional and structural tunability, low density, and superior stability have rendered COF candidates in a variety of applications, such as adsorption and separation, catalysis, electronics, chemical sensing, optics, and so forth. To better understand the structures and properties of COFs as well as the design principles, it is of great significance to learn about the linkages formed during synthetic reactions that contribute to the high crystallinity and stability of COFs. In this review, we will first discuss various linkages that have been utilized for COF construction up to date, followed by an outline of their miscellaneous applications, providing a comprehensive and detailed overview in this file.  相似文献   

3.
Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from “close” state in nitrogen to “open” state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.  相似文献   

4.
Ordered π‐columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external‐stimuli‐responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π‐building blocks. The COF is switchable upon photoirradiation to yield a concavo‐convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π‐columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external‐stimuli‐induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π‐electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.  相似文献   

5.
The development of new vinylene-linked covalent organic frameworks (COFs) with special ionic structure and high stability is challenging. Herein, we report a facile, general method for constructing ionic vinylene-linked thiopyrylium-based COFs from 2,4,6-trimethylpyrylium tetrafluoroborate and other common reagents by means of acid-catalyzed Aldol condensation. Besides, pyrylium-, and pyridinium-based COFs also can be prepared from the same monomer under slightly different reaction conditions. The COFs exhibited uniform nanofibrous morphologies with excellent crystallinities, special ionic structures, well-defined nanochannels, and high specific surface areas.  相似文献   

6.
Vinylene-linked covalent organic frameworks(COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, permanent porosity, ultrahigh chemical stability, and extraordinary optoelectronic properties. Over the past 5 years, this kind of material has been witnessed rapid development either in chemical synthesis or in potential applications. In this review, we summarize the chemistry to synthesize vinylene-linked COFs, especially the synthetic strategies involving activation of aryl methyl groups for condensation reaction. We then scrutinize the state-of-the-art development in properties and functions of this kind of COFs. Our own opinions on the further development of the vinylene-linked COFs are also presented for discussion.  相似文献   

7.
Highly luminescent bulk two-dimensional covalent organic frameworks (COFs) attract much attention recently. Origin of their luminescence and their large Stokes shift is an open question. After first-principles calculations on two kinds of COFs using the GW method and Bethe-Salpeter equation, we find that monolayer COF has a direct band gap, while bulk COF is an indirect band-gap material. The calculated optical gap and optical absorption spectrum for the direct excitons of bulk COF agree with the experiment. However, the calculated energy of the indirect exciton, in which the photoelectron and the hole locate at the conduction band minimum and the valence band maximum of bulk COF respectively, is too low compared to the fluorescence spectrum in experiment. This may exclude the possible assistance of phonons in the luminescence of bulk COF. Luminescence of bulk COF might result from exciton recombination at the defects sites. The indirect band-gap character of bulk COF originates from its AA-stacked conformation. If the conformation is changed to the AB-stacked one, the band gap of COF becomes direct which may enhance the luminescence.  相似文献   

8.
Designing structural order in electronically active organic solids remains a great challenge in the field of materials chemistry. Now, 2D poly(arylene vinylene)s prepared as highly crystalline covalent organic frameworks (COFs) by base‐catalyzed aldol condensation of trimethyltriazine with aromatic dialdehydes are reported. The synthesized polymers are highly emissive (quantum yield of up to 50 %), as commonly observed in their 1D analogues poly(phenylene vinylene)s. The inherent well‐defined porosity (surface area ca. 1000 m2 g?1, pore diameter ca. 11 Å for the terephthaldehyde derived COF‐1) and 2D structure of these COFs also present a new set of properties and are likely responsible for the emission color, which is sensitive to the environment. COF‐1 is highly hydrophilic and reveals a dramatic macroscopic structural reorganization that has not been previously observed in framework materials.  相似文献   

9.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

10.
Pore environment and aggregated structure play a vital role in determining the properties of porous materials, especially regarding the mass transfer. Reticular chemistry imparts covalent organic frameworks (COFs) with well-aligned micro/mesopores, yet constructing hierarchical architectures remains a great challenge. Herein, we reported a COF-to-COF transformation methodology to prepare microtubular COFs. In this process, the C3-symmetric guanidine units decomposed into C2-symmetric hydrazine units, leading to the crystal transformation of COFs. Moreover, the aggregated structure and conversion degree varied with the reaction time, where the hollow tubular aggregates composed of mixed COF crystals could be obtained. Such hierarchical architecture leads to enhanced mass transfer properties, as proved by the adsorption measurement and chemical catalytic reactions. This self-template strategy was successfully applied to another four COFs with different building units.  相似文献   

11.
Two 2D wavy hexagonal hexahydroxyl cyclotricatechylene (CTC) based COFs, CTC‐COF‐2 and CTC‐COF‐3 were synthesized through solvothermal reaction. The bowl‐shaped conformation caused CTC skeletons packed in a columnar manner with the same oriented units, thus forming an undulated structure. The gas adsorption properties of CTC‐COFs were investigated, which show the potential application abilities in hydrogen storage of CTC‐COFs. The introduction of pyrene into CTC‐COF‐3 makes it a potential semiconducting π‐conjugated material.  相似文献   

12.
The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D‐PdPor‐COF and 3D‐PdPor‐COF) are synthesized. By model building and Rietveld refinement of powder X‐ray diffraction, 2D‐PdPor‐COF crystallizes as 2D sheets while 3D‐PdPor‐COF adopts a five‐fold interpenetrated pts topology. Interestingly, compared with 2D‐PdPor‐COF, 3D‐PdPor‐COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size‐selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities.  相似文献   

13.
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.  相似文献   

14.
Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%) of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with the π-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis.  相似文献   

15.
The Yaghi laboratory has developed porous covalent organic frameworks (COFs), COF102, COF103, and COF202, and metal-organic frameworks (MOFs), MOF177, MOF180, MOF200, MOF205, and MOF210, with ultrahigh porosity and outstanding H(2) storage properties at 77 K. Using grand canonical Monte Carlo (GCMC) simulations with our recently developed first principles based force field (FF) from accurate quantum mechanics (QM), we calculated the molecular hydrogen (H(2)) uptake at 298 K for these systems, including the uptake for Li-, Na-, and K-metalated systems. We report the total, delivery and excess amount in gravimetric and volumetric units for all these compounds. For the gravimetric delivery amount from 1 to 100 bar, we find that eleven of these compounds reach the 2010 DOE target of 4.5 wt % at 298 K. The best of these compounds are MOF200-Li (6.34) and MOF200-Na (5.94), both reaching the 2015 DOE target of 5.5 wt % at 298 K. Among the undoped systems, we find that MOF200 gives a delivery amount as high as 3.24 wt % while MOF210 gives 2.90 wt % both from 1 to 100 bar and 298 K. However, none of these compounds reach the volumetric 2010 DOE target of 28 g H(2)/L. The best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H(2)/L units for 1-100 bar. These are the highest volumetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. Thus, one can obtain outstanding H(2) uptakes with Li, Na, and K doping of simple frameworks constructed from simple, cheap organic linkers. We present suggestions for strategies for synthesis of alkali metal-doped MOFs or COFs.  相似文献   

16.
Covalent organic frameworks (COFs) have garnered immense scientific interest among porous materials because of their structural tunability and diverse properties. However, the response of such materials toward laser‐induced nonlinear optical (NLO) applications is hardly understood and demands prompt attention. Three novel regioregular porphyrin (Por)‐based porous COFs—Por‐COF‐HH and its dual metalated congeners Por‐COF‐ZnCu and Por‐COF‐ZnNi—have been prepared and present excellent NLO properties. Notably, intensity‐dependent NLO switching behavior was observed for these Por‐COFs, which is highly desirable for optical switching and optical limiting devices. Moreover, the efficient π‐conjugation and charge‐transfer transition in ZnCu‐Por‐COF enabled a high nonlinear absorption coefficient (β=4470 cm/GW) and figure of merit (FOM=σ1o, 3565) value compared to other state‐of‐the‐art materials, including molecular porphyrins (β≈100–400 cm/GW), metal–organic frameworks (MOFs; β≈0.3–0.5 cm/GW), and graphene (β=900 cm/GW).  相似文献   

17.
《中国化学快报》2023,34(1):107201
Development of adsorbent materials for highly efficient iodine capture is high demand from the perspective of ecological environment and human health. Herein, the two kinds of thiophene-based covalent organic frameworks (COFs) with different morphologies were synthesized by solvothermal reaction using thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as the aldehyde monomer and tri(4-aminophenyl)benzene (PB) or tris(4-aminophenyl)amine (PA) as the amino monomer (denoted as PB-TT COF and PA-TT COF) and the as-prepared two heteroatoms-rich COFs possessed many excellent properties, including high thermal stability and abundant binding sites. Among them, PB-TT COF exhibited ultra-high iodine uptake up to 5.97 g/g in vapor, surpassing most of adsorbents previously reported, which was ascribed to its high specific surface (1305.3 m2/g). Interestingly, PA-TT COF with low specific surface (48.6 m2/g) showed good adsorption ability for iodine in cyclohexane solution with uptake value of 750 mg/g, which was 2.38 times higher than that obtained with PB-TT COF due to its unique sheet-like morphology. Besides, the two COFs possessed good reusability, high selectivity and iodine retention ability. Based on experimental results, the adsorption mechanisms of both COFs were studied, revealing that iodine was captured by the physical-chemical adsorption. Furthermore, the both COFs showed excellent adsorption ability in real radioactive seawater treated safely, demonstrating their great potential in real environment.  相似文献   

18.
Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge-storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large-scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two-dimensional imine-linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates.  相似文献   

19.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

20.
We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 μmol h−1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号