首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid-state polymerization of maleimide by γ- and ultraviolet irradiation was carried out in binary systems with succinimide, maleic anhydride, and acenaphthylene. Polymaleimide obtained from the solid-state polymerization of maleimide by γ-rays was amorphous, while that obtained from the solid-state polymerization by ultraviolet rays was highly crystalline. In the maleimide–succinimide system the rate of polymerization reached a maximum nearly at the eutectic composition when the polymerization was carried out by γ-irradiation. With ultraviolet irradiation the rate of polymerization became higher with increasing content of succinimide in the feed. In the maleimide–maleic anhydride system a copolymer of both constituents was formed by γ-irradiation, but almost no homopolymer was produced. On the other hand, two kinds of polymers, a crystalline copolymer and an amorphous one, were produced by ultraviolet irradiation. The results were compared with those obtained from the copolymerization in solution. In the maleimide-acenaphthylene system the main products with ultraviolet irradiation was the dimer of acenaphthylene.  相似文献   

2.
The gamma-ray induced solid-state polymerization of binary mixtures consisting of a maleimide derivative as the first component and acenaphthylene or trans-stilbene as the second component was investigated regarding the occurrence of copolymerization. The binary solid mixture of these compounds exhibited a phase-equilibrium diagram including a simple eutectic mixture, and the irradiation caused the formation of a random copolymer together with that of homopolymers of component comonomers. The reaction rates and the composition of products suggested that the mobility of monomer molecules in the crystals affected the solid-state polymerization significantly. The solid-state copolymerization was supposed to take place by the diffusion of comonomer molecules via a vapor phase to the nuclei where the copolymerization proceeded.  相似文献   

3.
Vapor-phase graft copolymerizations of acenaphthylene–maleimide or acenaphthylene–maleic anhydride binary solid monomers onto poly(ethylene-co-vinyl acetate) films were carried out under ultraviolet irradiation. The extent of sorption of single or binary monomers increased with the increasing vinyl acetate content in the backbone polymers. The sorbed binary monomers were mainly composed of acenaphthylene, but the maleimide or maleic anhydride fraction increased with the increasing vinyl acetate content of the films and the composition was little affected by surface hydrolysis. In all series of graft polymerization of single or binary monomers the overall extent of grafting increased with the vinyl acetate content and was suppressed by the surface hydrolysis of the backbone film. The composition of the grafted copolymer, however, differed markedly, depending on the combination of binary monomers. The grafted copolymer in the acenaphthylene–maleimide system was composed mainly of acenaphthylene units, whereas that in the acenaphthylene–maleic anhydride system was composed mainly of maleic anhydride units. The results were compared with those of γ-ray grafting, and it was suggested that the contribution of a direct supply of monomers from vapor phase and the existence of an acetoxy group on the surface of the film should play an important role in the grafting reaction.  相似文献   

4.
The gamma-ray initiated copolymerization of crystallized mixtures of acenaphthylene and vinylcarbazole was investigated. These monomers form a eutectic mixture for a vinylcarbazole content of 68 per cent. The polymerization kinetics were investigated and the resulting products were fractionated. It was found that, in mixtures containing an excess of acenaphthylene with respect to the eutectic composition, a copolymerization in the eutectic phase and a homopolymerization in crystals of acenaphthylene occur side by side. These two reactions appear to develop independently. In those mixtures which contain an excess vinylcarbazole, both the copolymerization in the eutectic and the homopolymerization in the monomer crystals increase in rate which results in a sharp maximum in overall rate for the mixture containing 85 per cent vinylcarbazole. Some properties of the copolymer formed in the eutectic were examined. This product was found to have a very broad distribution of compositions and to behave under conditions of thermal degradation like a mixture of homopolymers. It appears that this product is not a random copolymer. From the data available, it is concluded that it is a mixture of the two homopolymers and of a block copolymer. The formation of the latter implies that a growing chain initiated in a crystallite of the eutectic may cross a crystalline interface and pursue its propagation in a neighbouring crystallite.  相似文献   

5.
Radiation-induced copolymer grafting of acenaphthylene and maleic anhydride onto polyethylene or EVA film in the vapor phase was carried out and the effect of comonomer sorption on the grafting was studied. When polyethylene film was used as a backbone polymer, the sorption of the binary monomers during the grafting increased linearly as the grafting reaction proceeded. The marked increase was probably caused by the formation of a grafted layer. Particularly, the sorption of maleic anhydride was brought about by the existence of a grafted layer. In grafting onto EVA film, the content of maleic anhddride in the grafted copolymer increased with the increasing content of vinyl acetate in EVA. Continuous measurements of sorption of the comonomers onto EVA and grafted EVA films were carried out by use of an electrobalance. The distinctive feature of the sorption was that the equilibrium sorption of acenaphthylene or maleic anhydride onto the grafted EVA film increased and the diffusion constants for both comonomers decreased markedly with increasing percentage of graft. The copolymer grafting was explained from these results by assuming that the monomer molecules are supplied to the propagating chain ends mostly through a sorbed state on the polymer film.  相似文献   

6.
The copolymerization of ethylene with maleic anhydride was carried out with γ-radiation and a radical initiator, i.e., 2,2′-azobisisobutyronitrile and diisopropyl peroxydicarbonate under pressure at various reaction conditions. The homopolymerization of neither monomer was observed in this system. In the γ-ray-initiated copolymerization the G value (polymerized monomer molecules per 100 e.v.) was shown to be between 103 and 104. It was found that the dose rate exponent of the rate is approximately unity, and the rate is proportional to the amount of ethylene monomer. Apparent activation energies of 1.8 and 27.5 kcal./mole were obtained for γ-ray-initiated and AIBN-initiated copolymerization, respectively. Since the composition of copolymer is independent of monomer molar ratio and the molar ratio of ethylene to maleic anhydride in the polymer is approximately unity, the monomer reactivity ratios were obtained as rE ? 0 and rM ? 0 for γ-ray-initiated polymerization at 40°C. Alternating copolymerization was, therefore, concluded to occur. Infrared analysis of the copolymer is almost consistent with this. The copolymer in the solid state is amorphous. It is soluble in water, cyclohexane, and dimethylformamide and insoluble in lower alcohols, ether, and aromatic hydrocarbons. The aqueous solution of polymer gave a strong acid.  相似文献   

7.
Previous work from this laboratory has shown that certain 1,4-dienes which readily undergo cyclocopolymerization with certain alkenes also form charge-transfer complexes with the same alkenes. The results observed and the proposed cyclocopolymerization mechanism are consistent with participation of the charge-transfer complex as a distinct species in the copolymerization. It was the purpose of this investigation to determine whether there was a dilution effect on the relative reactivities of the monomers in support of the charge-transfer participation concept, and whether the results of a suitable terpolymerization study would also support this postulate. In the divinyl ether–fumaronitrile system, the maximum rate of copolymerization occurred at a monomer feed ratio of 1:2 and the composition of the copolymer was also 1:2 at a total monomer concentration of 3 mole/l. However, when the concentration was progressively lowered to 0.5 mole/l. at the same monomer feed ratio, the fumaronitrile content of the copolymer decreased in a linear manner. In a series of terpolymerization experiments with the divinyl ether–maleic anhydride–acrylonitrile system, it was shown that the divinyl ether–maleic anhydride ratio in the terpolymer was always less than 1:1 and had an upper limit of 1:2, regardless of the feed ratio of the termonomers. These results are consistent with the participation of the charge-transfer complex of divinyl ether and maleic anhydride in a copolymerization process with either maleic anhydride or acrylonitrile as the comonomer.  相似文献   

8.
A novel dispersion copolymerization of maleic anhydride (MAn) and vinyl acetate (VAc) without adding stabilizer is developed, which gives uniform copolymer microspheres with tunable sizes. Some principal factors affecting the microspheres, such as reaction time, monomer concentration and feed ratio, reaction media, and cosolvent, were investigated. It was found that the stabilizer‐free dispersion copolymerization of MAn and VAc is a rapid process, and the particle size grows in accordance with the evolution of polymerization. The chemical composition of the copolymer microspheres was characterized by FT‐IR and 13C NMR spectroscopies. Over a wide range of monomer concentrations, the microspheres can always be formed and stably dispersed, with uniform sizes ranging from 180 nm to 740 nm. The yield of copolymer microspheres reaches a maximum at 1:1 feed ratio of MAn to VAc, owing to the alternating copolymerization between the binary monomers by a known charge‐transfer‐complex mechanism. However, the diameter of microspheres drastically increases when MAn content is enhanced. Only some specific alkyl ester solvents, such as n‐butyl acetate, isobutyl acetate, n‐amyl acetate, are desirably fit for this unique stabilizer‐free dispersion polymerization. Furthermore, we found that when some acetone is added as a cosolvent, the copolymer microspheres can still be formed, with much larger diameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3760–3770, 2005  相似文献   

9.
The initiation mechanism of the copolymerization of 2-vinylnaphthalene with maleic anhydride was studied under irradiation of 365 nm. The excited complex was formed from (1) the local excitation of 2-vinylnaphthalene followed by the charge-transfer interaction with maleic anhydride and (2) the excitation of the ground state charge-transfer complex, and then it collapsed to 1,4-tetramethylene biradical for initiation. A1: 1 alternating copolymer was formed in different monomer feeds. Addition of benzophenone could greatly enhance the rate of copolymerization through energy-transfer mechanism.  相似文献   

10.
The radiation-induced solid-state polymerization of binary systems consisting of acrylic monomer (acrylamide, acrylic acid) and organic compounds was investigated. In the previous paper on binary systems the authors reported that the rate of polymerization increased in the solid state (eutectic mixture systems). The mechanism of rate increase has been investigated by examination of phase diagrams, viscosities, and surface tension of the binary systems. Viscosity and surface tension are the measure of the molecular interaction of the two-component systems. In addition, the effect of linear crystal growth rate and half maximum width of the x-ray diffraction diagram of the crystallization process were determined. The larger the molecular interaction between the two components, the slower the linear crystal growth rate of monomer. The size of the monomer crystal decreases and the dislocation density of the monomer crystals increases in systems with large molecular interaction. Consequently it can be concluded that the physical structure of a binary solid system is the most important parameter determining the rate increase of solid-state polymerization. Dislocation on the grain boundary is more important than defects inside of the crystal lattice. It was found that the acceleration of polymerization rate is large in binary systems with larger molecular interaction. In some systems such as organic acid—amide systems with strong hydrogen bonds, glassy phases may be formed in which monomer may readily polymerize at very low temperatures.  相似文献   

11.
Some features of radical ternary copolymerization of maleic anhydride (MA)–styrene (St)–acrylonitrile (AN) and n‐butyl methacrylate (BMA)–St–AN acceptor–donor–acceptor monomer systems have been revealed. The terpolymer compositions and kinetics of copolymerizations were studied in the initial and high conversion stages. The considerable divergence in the copolymer compositions was observed when a strong acceptor MA monomer was substituted with BMA having comparatively low acceptor character in the ternary system studied. Obtained results show that terpolymerization proceeded mainly through “complex” mechanism in the state of near binary copolymerization of St…MA (or BMA) and AN…St complexes only in the chosen ratios of complexed monomers. The terpolymers synthesized have high thermal stabilities (295–325 °C), which is explained by possible intermolecular fragmentation of AN‐units through cyclization and crosslinking reactions during thermotreatment in the isothermal heating conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2652–2662, 2000  相似文献   

12.
A binary mixture of styrene and maleic anhydride has been graft copolymerized onto cellulose extracted from Pinus roxburghii needles. The reaction was initiated with gamma rays in air by the simultaneous irradiation method. Graft copolymerization was studied under optimum conditions of total dose of radiation, amount of water, and molar concentration previously worked out for grafting styrene onto cellulose. Percentage of total conversion (Pg), grafting efficiency (%), percentage of grafting (Pg), and rates of polymerization (Rp), grafting (Rg), and homopolymerization (Rh) have been determined as a function of maleic anhydride concentration. The high degree of kinetic regularity and the linear dependence of the rate of polymerization on maleic anhydride concentration, along with the low and nearly constant rate of homopolymerization suggest that the monomers first form a complexomer which then polymerizes to form grafted chains with an alternating sequence. Grafting parameters and reaction rates achieve maximum values when the molar ratio of styrene to maleic anhydride is 1 : 1. Further evidence for the alternating monomer sequence is obtained from quantitatively evaluating the composition of the grafted chains from the FT‐IR spectra, in which the ratio of anhydride absorbance to aromatic (CC) absorbance for the stretching bands assigned to the grafted monomers remained constant and independent of the feed ratio of maleic anhydride to styrene. Thermal behaviour of the graft copolymers revealed that all graft copolymers exhibit single stage decomposition with characteristic transitions at 161–165°C and 290–300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1763–1769, 1999  相似文献   

13.
The radiation-induced solid-state polymerization of 3,3-bischloromethyloxetane (BCMO) was investigated by direct observation of the development of the morphology of the growing polymer phase in single crystals of the monomer. Electron microscopy shows that the polymerization gives rise to amorphous polymer in the first step. The polymer forms irregular platelets which aggregate into larger units without reflecting the crystalline order of the monomer. Subsequent to polymerization, the amorphous polymer crystallizes to the β-modification of poly-BCMO. If the partially polymerized crystals are extracted by solvents of the monomer, crystallization of the polymer is enhanced, and morphological artifacts arise which were previously mistaken for the true morphology of the “as polymerized” polymer. The copolymerization behavior of solid solutions of 3-ethyl-3-chloromethyloxetane (ECMO) and BCMO does not differ from the liquid bulk copolymerization with respect to copolymer composition, which is different from the composition of the monomer mixture. It is concluded that the polymer chains grow in noncrystalline zones as in a polymerization in the liquid state by which amorphous polymer is formed. No lattice control was observable in this solid-state polymerization.  相似文献   

14.
Radical copolymerization of butyl methacrylate with 2,3-dimethylbutadiene in the presence of Al(C2H5)2Cl or ZnCl2 results in alternating copolymers. The nature of active centers and the mechanism of polymerization in these systems have been studied by means of ESR measurements in combination with calorimetry at low temperatures. The active centers are monoradicals propagating by alternative addition of single monomer molecules; thus the reaction can be described in terms of a conventional kinetic scheme of radical additional polymerization. Participation of binary donor—acceptor complexes of the monomers in the reaction has not been confirmed. Similar conclusions have been drawn for the other alternating system studied, maleic anhydride–2,3-dimethylbutadiene. The feasibility of formation of alternating copolymers in the studied systems by the conventional mechanism of binary radical copolymerization has been confirmed by qualitative quantum-chemical treatment of the propagation reactions with due account to the donor–acceptor interactions in the transition state.  相似文献   

15.
Abstract

Radiation-induced polymerization in binary component systems of acrylonitrile-methacrylonitrile and acrylonitrile-vinyl acetate was studied at ?196°C. A mixture of two-component homopolymers was obtained from the acrylonitrile-methacrylonitrile system, which forms a eutectic mixture. When the mixture of acrylonitrile with vinyl acetate is cooled quickly from room temperature, a glassy state can be obtained. It was found that the copolymerization is possible in the glassy state at ?196°C, and the monomer reactivity ratios were determined as r 1 = 6.0 and r 2 = 0.2 (M 1 = acrylonitrile), which coincides with the reported values on the radical copolymerization at room temperature.  相似文献   

16.
Radiation-induced copolymerization of thiophene with maleic anhydride has been studied. On the copolymerization in chloroform solution, the effects of dose rate, polymerization temperature, and, monomer composition and concentration on the yield and molecular weight of the copolymer were determined. The copolymerization proceeds via a radical mechanism with bimolecular termination of propagating polymer radicals, and the apparent activation energy is 5.3 kcal/mole. By NMR spectroscopy of copolymer, it was also found that these monomers copolymerize alternately to give a copolymer having structure I. In this copolymerization, the higher initial rates were obtained at an equimolar composition of monomers and by using solvents containing chlorine, such as CC14, CHC13, and C6H5C1.  相似文献   

17.
The binary copolymerization of maleic anhydride (MA) and N-vinyl caprolactam (VCL) or considered as acceptor (A)?donor (D) monomer systems were used (MA:VCL) 50:50 in BPO (0.5%) as an initiator at 70°C under nitrogen atmosphere. The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized. Interlamellar in situ complex-radical copolymerization of intercalated monomer complexes of MA and VCL undergoes with stearyl amine surface modified montmorillonite (O-MMT) and monomer mixtures. Charge transfer complex formation was followed and identified by UV-Vis-NIR spectroscopy. Equilibrium constant (KAD) molar absorption coefficient (?AD)) of the complex were determined by the Benesi-Hildebrand, Scott and Ketaalar equations respectively. The results show that copolymerization of MA:VCL system was preceded via alternating copolymerization mechanism. Obtained functional alternating copolymer and copolymer/O-MMT nanostructures were characterized by XRD and TEM.  相似文献   

18.
Laser-initiated polymerization of cyclohexene oxide in the presence of maleic anhydride was investigated. The influences of solvents laser irradiation time and the monomer feed ratio on the polymer yield and composition were evaluated. The rate of polymerization increased with an increase in the molar concentration of maleic anhydride in the monomer feed. Short irradiation times of 1–3 min duration gave very high yield of epoxy polymer (>80% conversion). Infrared spectral studies of the polymer product indicated the formation of polyether linkage at lower levels of conversion and an adduct of polyether and maleic anhydride at higher polymer conversions. The quantitative chemical analyses results also showed similar results. The results indicated that the polymerization was initiated by the excited charge transfer complex between the electron donor, cyclohexane oxide, and the electron acceptor–maleic anhydride. In the initial stages of polymerization, cyclohexene oxide undergoes a cationic polymerization in the presence of the radical anion of maleic anhydride. Laser-initiated polymerization of cyclohexene oxide/maleic anhydride is several hundred times more efficient than UV-initiated polymerization, as measured by the energy absorbed by the polymer system.  相似文献   

19.
The process of formation of reticular copolymer molecular structures produced in free radical copolymerization of divinyl monomers (divinyl ethers of diethylene glycol and hydroquinone, divinyl sulfide, p-divinylbenzene, etc.) with maleic and fumaric acid derivatives is studied. The basic factor that determines the features of molecular and network structures of copolymers is reactivity of the divinyl monomer in copolymerization with monovinyl monomer. The network of copolymers of maleic anhydride with the divinyl ether of hydroquinone is formed out of oligomer microgels. Divinyl sulfide in copolymerization with maleic acid is disposed to cyclocopolymerization; also crosslinking reactions occur. Formation of a network structure of copolymers of divinylbenzene with maleic and fumaric acid derivatives is shown to proceed via an alternating copolymerization mechanism. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 371–378, 1998  相似文献   

20.
This article describes the laser-initiated copolymerization of N-vinylpyrrolidone with maleic anhydride and maleimide via charge transfer complexes. The dependence of copolymer yield on the molar ratios of the monomers in the feed and on the irradiation time is described. Based on the ultraviolet and infrared spectroscopy, and chemical analysis results, a tentative mechanism of polymerization is suggested. The rates of polymerization of several monomer systems are compared. The N-vinylpyrrolidone and maleimide system shows the highest rate of polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号