首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The thermal behavior and intermolecular interactions of blends of poly(3‐hydroxybutyrate) (PHB) and maleated PHB with chitosan were studied with differential scanning calorimetry, Fourier transform infrared (FTIR), wide‐angle X‐ray diffraction (WAXD), and X‐ray photoelectron spectroscopy (XPS). The differences in the two blend systems with respect to their thermal behavior and intermolecular interactions were investigated. The melting temperatures, melting enthalpies, and crystallinities of the two blend systems gradually decreased as the chitosan content in the blends increased. Compared with that of the PHB component with the same composition, the crystallization of the maleated PHB component was more intensively suppressed by the chitosan component in the blends because of the rigid chitosan molecular chains and the intermolecular hydrogen bonds between the components. FTIR, WAXD, and XPS showed that the intermolecular hydrogen bonds in the blends were caused by the carbonyls of PHB or maleated PHB and chitosan aminos, and their existence depended on the compositions of the blends. The introduction of maleic anhydride groups onto PHB chains promoted intermolecular interactions between the maleated PHB and chitosan components. In addition, the intermolecular interactions disturbed the original crystal structures of the PHB, maleated PHB, and chitosan components; this was further proven by WAXD results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 35–47, 2005  相似文献   

2.
利用红外吸收光谱(FTIR)研究了聚乳酸(PLLA)/4,4'-二羟基二苯硫醚(TDP)熔融共混物的分子间相互作用,结果表明,PLLA的羰基与TDP的羟基之间形成了分子间氢键.通过差示扫描量热(DSC)研究了共混物的玻璃化转变行为及非等温结晶和熔融行为.结果表明,样品的玻璃化转变温度(Tg)随TDP含量的增加呈线性下降.共混物的熔融结晶温度(Tc)、结晶焓(ΔHc)、熔融温度(Tm)及熔融焓(ΔHm)均随TDP含量的增加呈下降趋势,而冷结晶温度的变化趋势则相反.当TDP达到40%(质量分数)时,共混物的DSC曲线既未出现结晶峰,也未出现熔融峰,表明该样品已完全成为非晶态物质.广角X射线衍射(WAXD)分析结果表明,TDP的加入未改变PLLA的晶型,但导致其晶面间距变大,晶体结构变得松散.因此共混物熔点的下降归因于分子间氢键的形成降低了PLLA分子链的运动能力及晶体的紧密程度而非晶型的改变.  相似文献   

3.
Intermolecular hydrogen bonds, miscibility, crystallization and thermal stability of the blends of biodegradable poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-3HHx)] with 4,4-dihydroxydiphenylpropane (DOH2) were investigated by FTIR, 13C solid state NMR, DSC, WAXD and TGA. Intermolecular hydrogen bonds were found in both blend systems, which resulted from the carbonyl groups in the amorphous phase of both polyesters and the hydroxyl groups of DOH2. The intermolecular interaction between P(3HB-3HHx) and DOH2 is weaker than that between PHB and DOH2 owing to the steric hindrance of longer 3HHx side chains. Because of the effect of the hydrogen bonds, the chain mobility of both PHB and P(3HB-3HHx) components was limited after blending with DOH2 molecules. Single glass transition temperature depending on the composition was observed in all blends, indicating that those blends were miscible in the melt. The addition of DOH2 suppressed the crystallization of PHB and P(3HB-3HHx) components. Moreover, the crystallinity of PHB and P(3HB-3HHx) components also decreased with increasing DOH2 content in the blends. However, the crystal structures of the crystallizable components were not affected. The existence of DOH2 favors to thermal decomposition of PHB and P(3HB-3HHx) components, resulting in the decrease in thermal decomposition temperature.  相似文献   

4.
通过溶液浇铸法制备不同组分的左旋聚乳酸(PLLA)和聚(L-2-羟基-3-甲基丁酸)(PL-2H3MB)共混物.运用差示扫描量热仪(DSC)、偏光显微镜(POM)、广角X射线衍射(WAXD)和热重分析仪(TGA)分析共混物的结晶、熔融行为和热稳定性.通过观察到DSC加热曲线中新的熔融峰判断PLLA和PL-2H3MB共晶...  相似文献   

5.
By adjusting the molecular weight of the poly(l-lactic acid) (PLLA) component in poly(3-hydroxybutyrate) (PHB)/PLLA blends, we investigated the crystallization behaviors of the two components in their immiscible and miscible 50:50 blends by real time infrared (IR) spectroscopy. In the immiscible PHB/PLLA blend, the stepwise crystallization of PHB and PLLA was realized at different crystallization temperatures. PLLA crystallizes first at a higher temperature (120 degrees C). Its crystallization mechanism from the immiscible PHB/PLLA melt is not affected by the presence of the PHB component, while its crystallization rate is substantially depressed. Subsequently, in the presence of crystallized PLLA, the isothermal melt-crystallization of PHB takes place at a lower temperature (90 degrees C). It is interesting to find that there are two growth stages for PHB. At the early stage of the growth period, the Avrami exponent is 5.0, which is unusually high, while in the late stage, it is 2.5, which is very close to the reported value (n approximately 2.5) for the neat PHB system. In contrast to the stepwise crystallization of PHB and PLLA in the immiscible blends, the almost simultaneous crystallization of PHB and PLLA in the miscible 50:50 blend was observed at the same crystallization temperature (110 degrees C). Detailed dynamic analysis by IR spectroscopy has disclosed that, even in such apparently simultaneous crystallization, the crystallization of PLLA actually occurs faster than that of PHB. It has been found that, both in the immiscible and miscible blends, the crystallization dynamics of PHB are heavily affected by the presence of crystallized PLLA.  相似文献   

6.
In this communication, we reported the sequence variation of stereocomplex crystals (SC) and homocrystals (HC) in poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) racemic blends melts. It was evidenced that the emerging sequence of the SC and HC depends on the hydrogen bond formation in the melt, and the hydrogen bond is required for the stereocomplexation in PLLA/PDLA racemic blend. First, by combining a commercial fast‐scan chip‐calorimeter (Flash DSC 1) and micro‐FTIR, we found that hydrogen bonds were formed in the melt during cooling at 2.5 K/s, but not at 3000 K/s. Second, annealing the melt without hydrogen bonds at 100 °C led to HC emerging first, while annealing the melt with hydrogen bonds resulted in SC emerging at first. Third, the crystallization kinetics of the racemic blends after cooling to predefined Tc at 2.5 or 3000 K/s further verified that the hydrogen bonding can be inhibited effectively by cooling the racemic blends isotropic melt at fast enough rate. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 83–88  相似文献   

7.
iPP/HDPE/EPDM三元共混体系的组分分布、相容性和结晶行为   总被引:1,自引:0,他引:1  
 用DSC、13C-NMR、SEM和WAXD等方法研究了IPP/HDPE/EPDM三元共混体系的组分分布、相容性和结晶行为。实验结果表明,EPDM与PE组分的相容性优于与PP组分的相容性,多数EPDM分子链段能够分布在PE组分中;EPDM含量为15%时,共混物相容性最好,SEM照片呈现晶体微区的互连或网络状结构;随EPDM含量增加,总结晶度Xc减小,其中PE组分结晶度XcE有较大幅度地降低,PP组分结晶度Xcp基本没有变化,这可以根据EPDM和PE、PP之间相容性的差异以及PE、PP两组分在冷却过程中不同的结晶行为来解释。  相似文献   

8.
The crystallization, special interaction, rheological behavior, and mechanical properties of PVC/ferrocene blends were studied through WAXD, FTIR, XPS, capillary rheometry, and mechanical property tests. The experimental results showed that the tensile strength of PVC/ferrocene (100/10) amounts to 82 MPa, 1.3 times as high as that of PVC. In the presence of a small amount of ferrocene, the processability of PVC is also improved. Crystallization of ferrocene in the blend is inhibited. The FTIR characteristic peaks of ferrocene shift or disappear. A new peak appears in the C1s XPS spectra and the Cl (2p) XPS spectra of PVC/ferrocene blends, and most of the ferrocene in the blends cannot be extracted by solvent alcohol, indicating the existence of some intermolecular interactions between PVC and ferrocene which cause the mechanical strength of the blends to increase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2828–2834, 1999  相似文献   

9.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

10.
Novel bio-based and biodegradable block copolymers were synthesized by "click" reaction between poly(L-lactide)(PLLA) and polyamide 4(PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.  相似文献   

11.
FTIR spectroscopy was used to verify the presence of intermolecular hydrogen bond (inter-H-bond) between poly(3-hydroxybutyrate co-3-hydroxyvalerate) (PHBV) and bisphenol A (BPA). By monitoring the spectral changes during PHBV crystallization and blends dissociation, the absorptivity ratio of CO bonds in crystalline and amorphous regions in PHBV and that of H-bonded and free CO in PHBV/BPA blends were experimentally determined as 1.40 and 1.68, respectively. Using curve-fitting program, the CO absorptions in spectra of blends were ascribed to three types of bonds: amorphous, crystalline and H-bonded CO. The crystallinity of PHBV and the fraction of H-bonded CO were calculated. These results indicated that the H-bond clearly suppressed the PHBV crystallization. Furthermore, the fraction of BPA molecules that simultaneously formed two hydrogen bonds (H-bonds) with CO was estimated. It revealed that there existed a H-bond network in PHBV/BPA blends. This network was compared with the covalent network by estimating the number of atoms between every two adjacent crosslink points in chain. Up to the high density of H-bond discussed in this paper, there was always a certain part in PHBV that crystallized due to the dynamic character of hydrogen bonds; however, the hydrogen bonds significantly reduced the crystallization rate of PHBV.  相似文献   

12.
New binary blends composed of poly(ethylene succinate) and poly(propylene succinate) or poly(ethylene succinate) and poly(butylene succinate) were prepared. Both PESu/PPSu and PESu/PBSu systems belong to semicrystalline/semicrystalline pairs. The miscibility and crystallization behavior was investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and polarizing light microscopy (PLM). Blends of PESu and PPSu exhibited a single composition dependent glass transition temperature over the entire range of composition, indicating that the system is miscible. The melting point depression of the high melting temperature component, PESu, was analyzed according to the Nishi‐Wang equation. A negative polymer–polymer interaction parameter was obtained, indicating that the blends are thermodynamically miscible in the melt. The two components crystallized sequentially when the blends were cooled rapidly to a low temperature. DSC traces of PESu/PBSu blends after quenching showed two distinct composition dependent glass transition temperatures between those of the neat polymers, showing that the polymers are partially miscible. The amorphous PESu/PBSu blends in the intermediate compositions showed three cold‐crystallization peaks, indicating the influence of mixing. The crystallization rates of PBSu were reduced and those of PESu were increased. WAXD showed reduced crystallinity and peak broadening in the patterns of the blends of intermediate compositions, while no spherulites could be detected by PLM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 584–597, 2006  相似文献   

13.
用DSC、~(13)C-NMR、SEM和WAXD等方法研究了IPP/HDPE/EPDM三元共混体系的组分分布、相容性和结晶行为。实验结果表明,EPDM与PE组分的相容性优于与PP组分的相容性,多数EPDM分子链段能够分布在PE组分中;EPDM含量为15%时,共混物相容性最好,SEM照片呈现晶体微区的互连或网络状结构;随EPDM含量增加,总结晶度X_c减小,其中PE组分结晶度X_(cE)有较大幅度地降低,PP组分结晶度X_(cp)基本没有变化,这可以根据EPDM和PE、PP之间相容性的差异以及PE、PP两组分在冷却过程中不同的结晶行为来解释。  相似文献   

14.
The miscibility and underlying hydrogen‐bonding interactions of blends of a fluorinated copolymer containing pyridine and a nonfluorinated copolymer containing methacrylic acid were studied with differential scanning calorimetry (DSC), transmission Fourier transform infrared (TX‐FTIR) spectroscopy, and X‐ray photoelectron spectroscopy (XPS), whereas the surface properties of the blends were investigated with contact‐angle measurements, time‐of‐flight secondary‐ion mass spectroscopy, XPS, and attenuated total reflectance Fourier transform infrared spectroscopy. DSC studies showed that the presence of a sufficient amount of 4‐vinylpyridine units in the fluorinated copolymer produced miscible blends with the nonfluorinated copolymer containing methacrylic acid. TX‐FTIR and XPS showed the existence of pyridine–acid interpolymer hydrogen‐bonding interactions. Even though the anchoring effect of hydrogen bonding hindered the migration of the fluorinated component to the blend surface, it could not completely eliminate the surface enrichment of the fluorinated component and the surface rearrangement of the fluorinated pendant chain. The air–blend interface was mainly occupied by the fluorinated pendant chain, and the surface energies of the blends were extremely low, even with only 1.5 wt % of the fluorinated component in the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1145–1154, 2004  相似文献   

15.
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends ; (2) The β-type crystal structureof PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.  相似文献   

16.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

17.
Application of poly(ethylene oxide)-based materials as efficient thermal energy storage systems requires understanding of structural and morphological issues that govern the thermal transitions of the blends. Poly(ethylene oxide)/lauric acid and poly(ethylene oxide)/stearic acid blends show high values of heat of melting and heat of crystallisation which exceed theoretically determined values - it is a synergistic effect that is advantageous in terms of energy storage. The PEO blends were investigated by PLM, SEM, AFM, WAXD, SAXS and 1H NMR techniques - PLM, SEM and AFM allows to observe regions, in which parallelly-packed crystals of fatty acid are present. WAXD results of PEO/fatty acid blends confirmed hindered crystallization of PEO in PEO/fatty acid blends and, finally, lower degree of polymer crystallinity. The NMR study shows that mixing of PEO and lauric acid results in an increase of PEO amorphous phase content in blends as compared to the pure PEO. From FTIR spectra, taken during melting and crystallization, it can be seen that for both investigated blends in the solid state there is only one maximum of band from ν(CO) (in position indicating that CO groups are engaged in formation of hydrogen bonds), while in the liquid state there are two maxima - position of the first maximum is characteristic for ν(CO) vibrations of CO groups that do not participate in formation of hydrogen bond, whereas position of the second maximum in the liquid state proves the presence of CO groups involved in formation of hydrogen bonds. Solid state NMR analysis reveals no esterification reactions between PEO and fatty acid.  相似文献   

18.
The thermal and structural properties of binary blends of Nylon-6 (N6) and a chemically related biopolymer, Bombyx mori silk fibroin (SF), are reported in this work. Homopolymers and blends, in composition ratios of N6/SF ranging from 95/05 to 70/30, were investigated by thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and wide angle X-ray scattering (WAXS). Silk fibroin typically degrades at temperatures just above 210°C, which occurs within the melting endotherm of N6. In TG studies, the measured mass remaining was slightly greater than expected, indicating the blends had improved thermal stability. No beta sheet crystals of SF were detected by FTIR analysis of the Amide I region. Strong interaction between N6 and SF chains was observed, possibly as a result of formation of hydrogen bonds between N6 and SF chains. DSC analysis showed that the addition of SF to N6 caused a decrease in the crystallization temperature, the melting temperature of the lowest melting crystals and the crystallinity of N6. Furthermore, the α-crystallographic phase dominates and the γ-crystallographic phase was not observed in N6/SF blends, in contrast to the homopolymer N6, which contains both phases. We suggest that the addition of SF might result in changes of the chain extension of N6, which lead to the appearance of α-rather than γ-phase crystals.  相似文献   

19.
王勇 《高分子科学》2017,35(3):386-399
Plasticized poly(L-lactide)(PLLA) materials have been applied in many fields and the microstructure performance of such materials attracts much attention of researchers. However, few reports declared the hydrolytic degradation ability of the plasticized PLLA materials. In this article, a small quantity of poly(ethylene glycol)(PEG) was introduced into PLLA, which aimed to understand the hydrolytic degradation behavior of the plasticized PLLA materials. The microstructures of the plasticized samples were comparatively investigated using scanning electron microscopy(SEM), wide angle X-ray diffraction(WAXD), differential scanning calorimetry(DSC) and Flourier transform infrared spectroscopy(FTIR), etc. The results demonstrated that PEG improved the hydrophilicity of sample surface, and the relatively high content of PEG enhanced the crystallization ability of PLLA matrix. The hydrolytic degradation measurement was carried out at 60 ℃ in an alkaline solution of pH = 12. The results demonstrated that the plasticized PLLA samples exhibited accelerated hydrolytic degradation compared with the pure PLLA sample, and the hydrolytic degradation was also dependent on the PEG content. Further results demonstrated that PEG induced the change of hydrolytic degradation mechanism possibly due to the good dissolution ability of PEG in water, which provided more paths for the penetration of water. Furthermore, the microstructure evolution of the plasticized PLLA during the hydrolytic degradation process was also investigated, and the results demonstrated the occurrence of PLLA crystallization, which was possibly contributed to the decreased hydrolytic degradation rate observed at relatively long hydrolytic degradation time. This work is of great significance and may open a new way for promoting the reclamation of PLLA waste material.  相似文献   

20.
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L ‐lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen‐bonded N? H stretching band. The interconversion between the “free” and hydrogen‐bonded N? H and C?O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C?O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 °C/min or higher, the crystallization of the PLLA soft segments was prohibited. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 685–695, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号