首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Self-standing composite films consisting of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibril (TOCN) and anionic poly(acrylamide) (PAM) in various weight ratios were prepared by casting and drying of homogeneous mixtures of aqueous TOCN dispersion and PAM solution. PAM/TOCN composite films consisting of 25 % PAM and 75 % TOCN had clearly higher Young’s modulus (13.9 GPa) and tensile strength (266 MPa) than 100 % TOCN film (10.8 GPa and 223 MPa, respectively) or 100 % PAM film (4.9 GPa and 78 MPa, respectively), showing that PAM molecules have mechanical reinforcement ability in TOCN matrix. Some attractive interactions are likely formed between TOCN element surfaces and PAM molecules. In contrast, no such mechanical improvements were observed for poly(vinyl alcohol)/TOCN or oxidized starch/TOCN composite films prepared as references. Moreover, the mechanical properties of the PAM/TOCN composite films were further improved by controlling molecular mass and branching degree of the PAM. The high optical transparency and low coefficient of thermal expansion of the 100 % TOCN film were mostly maintained in the TOCN composite film containing 25 % PAM.  相似文献   

2.
Thin nanocomposite films of thermoplastic starch, chitosan and cellulose nanofibers (bacterial cellulose or nanofibrillated cellulose) were prepared for the first time by solvent casting of water based suspensions of the three polysaccharides. The role of the different bioploymers on the final properties (thermal stability, transparency, mechanical performance and antimicrobial activity) of the films was related with their intrinsic features, contents and synergic effects resulting from the establishment of interactions between them. Thermoplastic starch displays an important role on the thermal stability of the films because it is the most stable polysaccharide; however it has a negative impact on the mechanical performance and transparency of the films. The addition of chitosan improves considerably the transparency (up to 50 % transmittance for 50 % of chitosan, in respect to the amount of starch), mechanical performance and antimicrobial properties (at least 25 % of chitosan and no more than 10 % of cellulose nanofibers are required to observe bacteriostatic or bactericidal activity) but decrease their thermal stability. The incorporation of cellulose nanofibers had the strongest positive impact on the mechanical properties of the materials (increments of up to 15 and 30 MPa on the Young′s modulus and Tensile strength, respectively, for films with 20 % of BC or NFC). Nonetheless, the impact in thermal stability and mechanical performance of the films, promoted by the addition of chitosan and cellulose nanofibres, respectively, was higher than the expected considering their percentage contents certainly because of the establishment of strong and complex interactions between the three polysaccharides.  相似文献   

3.
Cellulose (CE) composite films with high tensile strength, modulus, remarkable elongation as well as excellent electrical conductivity were successfully prepared by dispersing poly(butylene succinate) (PBS) and multiwalled carbon nanotubes (MWCNTs) in CE matrix via the help of ionic liquid 1-allyl-3-methylimidazolium chloride. Fourier transform infrared spectroscopy and differential scanning calorimetry results verified that a physical interaction junction existed between PBS and CE. Scanning electron micrograph (SEM) showed that the low content PBS was uniformly dispersed in CE matrix, leading to a tough and ductile fractured surface. The elongation at break of CE composite film with 1 wt% PBS was increased to 25.9 %, which showed an increase of 325 % compared to that of neat CE film (6.07 %). But high-content PBS acted as the structural defect in the CE matrix. MWCNTs were further added to improve the mechanical and conductive properties of the composite film. The tensile strength and Young’s modulus of MWCNT/CE-PBS composite film with 4 wt% MWCNTs were respectively increased by 33.6 and 140 % compared to CE-PBS film. The electrical conductivity of MWCNT/CE-PBS film was also improved by 8–9 orders of magnitude from 2.5 × 10?14 to 1.3 × 10?5 S/m.  相似文献   

4.
Corn starch (CS) and soy protein isolate (SPI), as inexpensive, abundant, and biodegradable materials, can chemically interact well with each other to produce biofilms. However, to overcome some of their physical and mechanical limitations, it is preferred to use their composite form, employing reinforcing materials. In this study, initially, graphene (G) and graphene oxide (GO) were synthesized by a green method. Then, to enhance the polymer blend final properties, the effects of adding G and GO in the range of 0.5 to 2 wt% on physical and mechanical properties of starch/protein blend were investigated. The results showed that the presence of 0.5‐wt% G and 2‐wt% GO significantly increased the modulus of starch/protein film from 252 to 578 and 449 MPa, respectively. In addition, the thermal stability of CS/SPI/GO (2 wt%) composite film was 50°C to 60°C more than that of the pure starch/protein film. On the other hand, G‐reinforced composite films tended to decline water diffusion compared with the pure polymer film. In addition, the composite film with 2‐wt% GO content had the lowest oxygen permeation rate (3.48 cm3 μm/m2d kpa) among the other composite films.  相似文献   

5.
Chitin/graphene oxide (GO) composite films with excellent mechanical properties were prepared in NaOH/urea solution using a freezing/thawing method. The structure, thermal stability and mechanical properties of the composite films were investigated. Use of an atomic force microscope and transmission electron microscopy indicated that GO was successfully exfoliated to a single layer by ultrasonication. The results revealed that GO nanosheets were homogeneously dispersed and embedded in the chitin matrix. Due to the strong interactions between GO and the chitin matrix, the tensile strength and elongation at break of the composite film possessing 1.64 wt% GO were significantly improved by 98.7 and 114.5 %, respectively, compared with pure chitin film.  相似文献   

6.
This work examines the addition of cationic polymers, cationic polyacrylamide (CPAM) and polyamide–amine–epichlorohydrin (PAE), to cellulose nanofibres to produce superior forming characteristics. The addition of 2 mg of high MW CPAM/g of nanofibres halved the drainage time to under 1 min at 0.1 wt% solids content due to increasing the floc size and the fibre forming a bulky and porous filter medium during drainage. The more open structure created in the wet state was partially preserved during the drying process, reducing the sheet density from 760 to 680 kg/m3, at the highest level of polymer addition. The addition of CPAM resulted in significant additional bridging between nanofibres, which then substantially increased the non-uniformity of the filter medium. PAE addition at 10 mg/g of micro fibrillated cellulose (MFC), also reduced drainage time, while increasing retention, but without changing the sheet uniformity. Wet strength increased continuously with PAE addition level, reaching 31.6 kN m/kg at the highest level of 20 mg of PAE/g of MFC.  相似文献   

7.

This study has concerned the development of polymer composite electrolytes based on poly(vinyl butyral) (PVB) reinforced with calcinated Li/titania (CLT) for use as an electrolyte in electrochemical devices. The primary aim of this work was to verify our concept of applying CLT-based fillers in a form of nano-backbone to enhance the performance of a solid electrolyte system. To introduce the network of CLT into the PVB matrix, gelatin was used as a sacrificial polymer matrix for the implementation of in situ sol–gel reactions. The gelatin/Li/titania nanofiber films with various lithium perchlorate (LiClO4) and titanium isopropoxide proportions were initially fabricated via electrospinning, and ionic conductivities of electrospun nanofibers were then examined at 25 °C. In this regard, the highest ionic conductivity of 2.55 × 10−6 S/cm was achieved when 10 wt% and 7.5 wt% loadings of LiClO4 and titania precursor were used, respectively. The nanofiber film was then calcined at 400 °C to remove gelatin, and the obtained CLT film was then re-dispersed in solvated PVB-lithium bis(trifluoromethanesulfonyl)imide (PVB-LiTFSI) solution before casting to obtain reinforced composite solid electrolyte film. The reinforced composite PVB polymer electrolyte film shows high ionic conductivity of 2.22 × 10−4 S/cm with a wider electrochemical stability window in comparison to the one without nanofillers.

  相似文献   

8.
Bio-blend films were prepared with sago starch and N-vinyl-2-pyrrolidone (NVP) by the casting method, varying the concentrations of sago starch (100 to 93%) and NVP (0 to 7%). The formulations were designated as F1 (starch 100%), F2 (starch 97%), F3 (starch 95%), and F4 (starch 97%). The highest tensile strength (TS), tensile modulus (TM), and elongation at break (Eb%) were found correspondingly to be 30.47 MPa, 407.74 MPa, and 8.25% for the F3 formulation. Gamma radiation was applied to films to modify their performance through grafting and cross-linking. The highest TS, TM, and Eb% were found at 500 krad dose and they were 38.12 MPa, 481.00 MPa, and 9.78%, respectively for F3 formulation. The water uptake nature and thermal properties of the treated and untreated films were also investigated.  相似文献   

9.
Indium–zinc oxide (IZO) thin films were fabricated by spin coating using acetate- and nitrate-based precursors, and thin film transistors (TFTs) were further fabricated employing the IZO films as the active channel layer. The impact of the indium concentration on the properties of the solutions, the structure and optical transmittance properties of the IZO films and the IZO TFTs device properties were researched in this article. The IZO films with amorphous structure were obtained when the annealing temperature is 500 °C. The transmittance could reach ~90 % (including glass substrate) during the visible region of 400–760 nm. Higher indium concentration can improve the IZO TFTs’ filed effect mobility. A Ion–Ioff of 6.0 × 106 and a mobility of 0.13 cm2/Vs were obtained when the indium concentration is 60 %. IZO TFTs’ performance could deteriorate when the indium concentration more than 60 %.  相似文献   

10.
The objective of the study was to determine the effects of molecular sizes of amylose (AM) and starch granules on the mechanical properties of thermoplastic starch (TPS) blend films. Leached amylose solution from cassava (CS_ AM) and mung bean (MB_AM), and two forms of amylopectin (AP) (granular; g and non-granular; ng) of waxy cassava (WxCS) starch were used. Four types of film matrices were fabricated and all TPS blend films contained same amount of AM and glycerol. Results displayed that molecular weight profiles of starch films and presence of granule remnants significantly controlled the film matrix formation, types of crystal formation, and percent of relative crystallinity (%RC) (p < 0.05). Tensile property of TPS films was controlled by %RC and presence of granule remnants. Percent elongation at break (%Eb) of TPS films increased when the films had a large range of molecular weight distribution (from 5.5 × 107 g/mol to 0.4 × 105 g/mol) and contained a high weight fraction (~58%) of starch molecules with Mw~0.4 × 105 g/mol.  相似文献   

11.
Abstract

The nanoscale dimension of electrospun polymeric nanofibres produced by electrospinning are highly captivating, yet facing limitation of resisting external forces due to the weak tensile properties. Carbon nanotubes providing tremendous toughness due to extraordinary strong sp2 bonding network of carbon atoms in honeycomb lattice structure, augmented the physical resistant strength and is easily recover to its original state after load is removed. This study reports the performance of multi-walled carbon nanotubes (MWCNTs) as filler in the electrospinning of poly (L-lactide)-co-ε-caprolactone) (PLCL) composite nanofibres. Voltage of 10?kV is applied to the spinning solution mixture of 11?wt% (w/v) PLCL and MWCNTs, yielded nanofibres having diameters less than 400?nm. Results obtained showed the formation of composite nanofibres with tailored tensile behavior by modifying the content of MWCNTs. The addition of MWCNTs improved the tensile properties of resultant composite nanofibres, signified by tensile strength of 5.82 to 15.95?MPa, which were obtained using 0.1 to 1.0?wt% of MWCNTs. The structural integrity of nanofibres mats were retained in phosphate buffer saline (PBS) medium. Scanning Electron Microscopy (SEM) micrographs revealed the minimal of fiber deformation over 30?days of incubation and are closely identical to the initial diameter of as-spun fiber.  相似文献   

12.
Highly crystalline ZnO–SiO2 films obtained by a sol–gel method at different ZnO contents were deposited on silicon substrate (P(100)) using spin coating process. The XRD results revealed that the strong ZnO(100) peak is grown with highly c-axis oriented film and the crystallinity is progressively improved with increasing ZnO contents. SEM micrographs of the films deposited on silicon substrate show a homogeneous and uniformity structure at different ZnO content. The prepared ZnO–SiO2 films are compared with either a film prepared from a commercial photocatalysts Hombikat UV-100 or Pilkington Glass Activ? by the determination of their photonic efficiencies for degradation of methylene blue. The photocatalytic efficiency of the 10 wt% ZnO–SiO2 film was found to be about four times higher than film prepared from UV-100 or Pilkington Glass Activ?. The photocatalytic efficiencies of ZnO–SiO2 films are increased with increasing ZnO content from 1 wt% to 10 wt% ZnO and then decreased at 15 wt% ZnO. The order of photocatalytic efficiencies of ZnO–SiO2 films at different ZnO content and commercial photocatalysts after 6 h illumination were as following: 10 wt% ZnO > 15 wt% ZnO > 1 wt% ZnO > as-prepared 10 wt% ZnO–SiO2 film > UV-100 > Pilkington Glass Activ?, which suggested that the ZnO–SiO2 films are photoactive than commercial photocatalysts. The improved efficiency and potentially the low-cost synthesis suggest that this material might be practically useful as a photocatalyst film.  相似文献   

13.
Novel amphiphilic hydroxyethyl starch derivatives 2,4-bistertbutylphenoxy-[1,3,5] -triazine-6-yl)-hydroxyethyl starch with different degrees of substitution of hydrophilic triazine group and hydrophobic hydroxyethyl were prepared by reacting corn starch with chlorohydrin and 2,4-Ditertbutyl phenoxyl-6-chloro-[1,3,5]-triazine, successively. Their structure was characterized by FTIR, 1H NMR, and SEM. It exhibits ideal surfacial abilities and compressive strength. The surface tension of the amphiphilic hydroxyethyl starch derivatives (MS = 1.1, DS = 0.026) reached 33.35 mN · m?1 at the critical aggregation concentration (CAC) at 25°C. The compressive strength of foam concrete was 0.97 MPa when the amount of added starch derivatives (MS = 1.1, DS = 0.026) reached 0.1 wt% of the total weight.  相似文献   

14.
Herein we report an easy and efficient approach to prepare lightweight porous polyimide (PI)/reduced graphene oxide (RGO) composite films. First, porous poly (amic acid) (PAA)/graphene oxide (GO) composite films were prepared via non‐solvent induced phase separation (NIPS) process. Afterwards PAA was converted into PI through thermal imidization and simultaneously GO dispersed in PAA matrix was in situ thermally reduced to RGO. The GO undergoing the same thermal treatment process as thermal imidization was characterized with thermogravimetric analysis, Raman spectra, X‐ray photoelectron spectroscopy and X‐ray diffraction to demonstrate that GO was in situ reduced during thermal imidization process. The resultant porous PI/RGO composite film (500‐µm thickness), which was prepared from pristine PAA/GO composite with 8 wt% GO, exhibited effective electrical conductivity of 0.015 S m?1 and excellent specific shielding efficiency value of 693 dB cm2 g?1. In addition, the thermal stability of the porous PI/RGO composite films was also dramatically enhanced. Compared with that of porous PI film, the 5% weight loss temperature of the composite film mentioned above was improved from 525°C to 538°C. Moreover, tensile test showed that the composite film mentioned above possessed a tensile strength of 6.97 MPa and Young's modulus of 545 MPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Highly flexible nanocomposite films of nanocrystalline cellulose acetate (NCCA) and graphene oxide (GO) were synthesized by combining NCCA and GO sheets in a well-controlled manner. By adjusting the GO content, various NCCA/GO nanocomposites with 0.3–1 wt% GO were obtained. Films of these nanocomposites were prepared using the solvent casting method. Microscopic and X-ray diffraction (XRD) measurements demonstrated that the GO nanosheets were uniformly dispersed in the NCCA matrix. Mechanical properties of the composite films were also studied. The best GO composition of the samples tested was 0.8 wt%, giving tensile strength of 157.49 MPa, which represents a 61.92 % enhancement compared with NCCA. On the other hand, the composite films showed improved barrier properties against water vapor. This simple process for preparation of NCCA/GO films is attractive for potential development of high-performance films for electrical and electrochemical applications.  相似文献   

16.
Solar cell encapsulating film based on ethylene vinyl acetate copolymer (EVA) was modified by using bacterial cellulose (BC) nanofibres. Bacterial cellulose was chemically modified with propionic anhydride prior to compounding with EVA in a twin screw extruder. The effects of fibre content on the mechanical, thermal, optical and barrier properties of the EVA composite films were investigated. Better mechanical and barrier properties of the EVA films were obtained when the modified BC nanofibres were used. The results were ascribed to the different chemical functional groups on the fibre surface, as verified by FTIR spectra. Deacetylation of the EVA was delayed and visible light transparency of the EVA films above 75% was retained. Overall, our study showed that it was possible to improve the barrier properties of EVA film without sacrificing much transparency by using a suitable type and content of cellulose nanofibres.  相似文献   

17.
ABSTRACT

Ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate](P(3HB)) was biosynthesized from glucose by a recombinant Escherichia coli XL-1 Blue (pSYL105) harboring Alcaligenes eutrophus PHB biosynthesis phbCAB genes. Six kinds of P(3HB) samples with differ-ent weight-average molecular weight (Mw ) from 1.1 × 106 to 11 × 106 measured by multi-angle laser light scattering were respectively produced at pH values of 7.0 to 6.5 in culture media. Solvent-cast P(3HB) films of high-molecular-weights over Mw of 3.3 × 106 were stretched easily and reproducibly at 160°C to a draw ratio of 400-650%. Mechanical properties of the stretched P(3HB) films were markedly improved relative to those of solvent-cast film. The elongation to break, Young's modulus, and tensile- strength of stretched film (Mw = 11 × 106) were 58%, 1.1 GPa, and 62 MPa, respectively. X-ray diffraction patterns indicated that the stretched film was highly oriented and had a high crystallinity over 80%. When the stretched film was annealed at 160°C for 2 hours, the mechanical properties were further improved (elongation to break = 67%, Young's modulus = 1.8 GPa and tensile strength = 77 MPa). The mechanical properties of the stretched-annealed film remained almost unchanged for 6 months at room temperature, suggesting that a high crystallinity of the stretched-annealed film avoids a progress of secondary crystallization.

  相似文献   

18.
Though research into nanofibrillated cellulose (NFC) has recently increased, few studies have considered co-utilising NFC and nanographite (NG) in composite films, and, it has, however been a challenge to use high-yield pulp fibres (mechanical pulps) to produce this nanofibrillar material. It is worth noting that there is a significant difference between chemical pulp fibres and high-yield pulp fibres, as the former is composed mainly of cellulose and has a yield of approximately 50 % while the latter is consist of cellulose, hemicellulose and lignin, and has a yield of approximately 90 %. NFC was produced by combining TEMPO (2,2,6,6-tetramethypiperidine-1-oxyl)-mediated oxidation with the mechanical shearing of chemi-thermomechanical pulp (CTMP) and sulphite pulp (SP); the NG was produced by mechanically exfoliating graphite. The different NaClO dosages in the TEMPO system differently oxidised the fibres, altering their fibrillation efficiency. NFC–NG films were produced by casting in a Petri dish. We examine the effect of NG on the sheet-resistance and mechanical properties of NFC films. Addition of 10 wt% NG to 90 wt% NFC of sample CC2 (5 mmol NaClO CTMP-NFC homogenised for 60 min) improved the sheet resistance, i.e. from that of an insulating pure NFC film to 180 Ω/sq. Further addition of 20 (CC3) and 25 wt% (CC4) of NG to 80 and 75 wt% respectively, lowered the sheet resistance to 17 and 9 Ω/sq, respectively. For the mechanical properties, we found that adding 10 wt% NG to 90 wt% NFC of sample HH2 (5 mmol NaClO SP-NFC homogenised for 60 min) improved the tensile index by 28 %, tensile stiffness index by 20 %, and peak load by 28 %. The film’s surface morphology was visualised using scanning electron microscopy, revealing the fibrillated structure of NFC and NG. This methodology yields NFC–NG films that are mechanically stable, bendable, and flexible.  相似文献   

19.
Organic-inorganic hybrid membranes based on poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride hexa fluoro propylene) [P(VdF-HFP)] 18.75 wt% were prepared by using various concentration of nanosized barium titanate (BaTiO3) filler. Structural characterizations were made by X-ray diffraction and Fourier transform infrared spectroscopy, which indicate the inclusion of BaTiO3 in to the polymer matrix. Addition of filler creates an effective route of polymer-filler interface and promotes the ionic conductivity of the membranes. From the ionic conductivity results, 6 wt% of BaTiO3-incorporated composite polymer electrolyte (CPE) showed the highest ionic conductivity (6 × 10?3 Scm?1 at room temperature). It is found that the filler content above 6 wt% rendered the membranes less conducting. Morphological images reveal that the ceramic filler was embedded over the membrane. Thermogravimetric and differential thermal analysis (TG-DTA) of the CPE sample with 6 wt% of the BaTiO3 shows high thermal stability. Electrochemical performance of the composite polymer electrolyte was studied in LiFePO4/CPE/Li coin cell. Charge-discharge cycle has been performed for the film exhibiting higher conductivity. These properties of the nanocomposite electrolyte are suitable for Li-batteries.  相似文献   

20.
Novel waterborne polyurethane (WPU) was prepared and coated on nylon 12 (Ny12) and fullerene-C60 (Full-C60, 1–10 wt%) composite films using simple dip coating technique. In Ny12/Full-C60 composite, fullerene nanoparticles were dispersed in a wavy layered pattern, whereas coated WPU/Ny12/Full-C60 films depicted uniform pattern of non-overlapping scales. WPU/Ny12/Full-C60 1–10 showed higher values of tensile strength and modulus, 91.4–98.1 MPa and 52.2–57.9 GPa, respectively. In WPU/Ny12/Full-C60 1–10, maximum degradation temperature was increased to 598°C and char yield to 35%. Increasing fullerene content from 1 to 10 wt% decreased maximum peak heat release rate from 209 to 132 kW m?2, i.e., 53% reduction in flammability compared to WPU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号