首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
对于纵向数据边际模型的均值函数, 有很多非参数估计方法, 其中回归样条, 光滑样条, 似乎不相关(SUR)核估计等方法在工作协方差阵正确指定时具有最小的渐近方差. 回归样条的渐近偏差与工作协方差阵无关, 而SUR核估计和光滑样条估计的渐近偏差却依赖于工作协方差阵. 本文主要研究了回归样条, 光滑样条和SUR核估计的效率问题. 通过模拟比较发现回归样条估计的表现比较稳定, 在大多数情况下比光滑样条估计和SUR核估计的效率高.  相似文献   

2.
Abstract

We consider the kernel estimator of conditional density and derive its asymptotic bias, variance, and mean-square error. Optimal bandwidths (with respect to integrated mean-square error) are found and it is shown that the convergence rate of the density estimator is order n –2/3. We also note that the conditional mean function obtained from the estimator is equivalent to a kernel smoother. Given the undesirable bias properties of kernel smoothers, we seek a modified conditional density estimator that has mean equivalent to some other nonparametric regression smoother with better bias properties. It is also shown that our modified estimator has smaller mean square error than the standard estimator in some commonly occurring situations. Finally, three graphical methods for visualizing conditional density estimators are discussed and applied to a data set consisting of maximum daily temperatures in Melbourne, Australia.  相似文献   

3.
The probability density estimation problem with surrogate data and validation sample is considered. A regression calibration kernel density estimator is defined to incorporate the information contained in both surrogate variates and validation sample. Also, we define two weighted estimators which have less asymptotic variances but have bigger biases than the regression calibration kernel density estimator. All the proposed estimators are proved to be asymptotically normal. And the asymptotic representations for the mean squared error and mean integrated square error of the proposed estimators are established, respectively. A simulation study is conducted to compare the finite sample behaviors of the proposed estimators.  相似文献   

4.
We consider estimation of the drift function of a stationary diffusion process when we observe high-frequency data with microstructure noise over a long time interval. We propose to estimate the drift function at a point by a Nadaraya–Watson estimator that uses observations that have been pre-averaged to reduce the noise. We give conditions under which our estimator is consistent and asympotically normal. Its rate and asymptotic bias and variance are the same as those without microstructure noise. To use our method in data analysis, we propose a data-based cross-validation method to determine the bandwidth in the Nadaraya–Watson estimator. Via simulation, we study several methods of bandwidth choices, and compare our estimator to several existing estimators. In terms of mean squared error, our new estimator outperforms existing estimators.  相似文献   

5.
The ordinary least squares estimation is based on minimization of the squared distance of the response variable to its conditional mean given the predictor variable. We extend this method by including in the criterion function the distance of the squared response variable to its second conditional moment. It is shown that this “second-order” least squares estimator is asymptotically more efficient than the ordinary least squares estimator if the third moment of the random error is nonzero, and both estimators have the same asymptotic covariance matrix if the error distribution is symmetric. Simulation studies show that the variance reduction of the new estimator can be as high as 50% for sample sizes lower than 100. As a by-product, the joint asymptotic covariance matrix of the ordinary least squares estimators for the regression parameter and for the random error variance is also derived, which is only available in the literature for very special cases, e.g. that random error has a normal distribution. The results apply to both linear and nonlinear regression models, where the random error distributions are not necessarily known.  相似文献   

6.
In this paper, we deal with the semi‐parametric estimation of the extreme value index, an important parameter in extreme value analysis. It is well known that many classic estimators, such as the Hill estimator, reveal a strong bias. This problem motivated the study of two classes of kernel estimators. Those classes generalize the classical Hill estimator and have a tuning parameter that enables us to modify the asymptotic mean squared error and eventually to improve their efficiency. Since the improvement in efficiency is not very expressive, we also study new reduced bias estimators based on the two classes of kernel statistics. Under suitable conditions, we prove their asymptotic normality. Moreover, an asymptotic comparison, at optimal levels, shows that the new classes of reduced bias estimators are more efficient than other reduced bias estimator from the literature. An illustration of the finite sample behaviour of the kernel reduced‐bias estimators is also provided through the analysis of a data set in the field of insurance.  相似文献   

7.
A stochastic restricted ridge regression estimator   总被引:1,自引:0,他引:1  
Groß [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64] proposed a restricted ridge regression estimator when exact restrictions are assumed to hold. When there are stochastic linear restrictions on the parameter vector, we introduce a new estimator by combining ideas underlying the mixed and the ridge regression estimators under the assumption that the errors are not independent and identically distributed. Apart from [J. Groß, Restricted ridge estimation, Statistics & Probability Letters 65 (2003) 57–64], we call this new estimator as the stochastic restricted ridge regression (SRRR) estimator. The performance of the SRRR estimator over the mixed estimator in respect of the variance and the mean square error matrices is examined. We also illustrate our findings with a numerical example. The shrinkage generalized least squares (GLS) and the stochastic restricted shrinkage GLS estimators are proposed.  相似文献   

8.
This paper studies the estimation of change point in mean and variance function of a non-parametric regression model based on kernel estimation and wavelet method. First, kernel estimation of mean function is developed and it is used to estimate the position and jump size of mean change. Second, wavelet methods are applied to derive the variance estimator which is used to estimate the location and jump size of the change point in variance. The asymptotic properties of these estimators are proved. Finally, the results from a numerical simulations and comparison study show that validate the effectiveness of our method.  相似文献   

9.
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19-41] for the constant variance case. As is the case when the number of dimensions d=1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.  相似文献   

10.
We focus on nonparametric multivariate regression function estimation by locally weighted least squares. The asymptotic behavior for a sequence of error processes indexed by bandwidth matrices is derived. We discuss feasible data-driven consistent estimators minimizing asymptotic mean squared error or efficient estimators reducing asymptotic bias at points where opposite sign curvatures of the regression function are present in different directions.  相似文献   

11.
Let X = (Xt, t 0) be a mean zero stationary Gaussian process with variance one, assumed to satisfy some conditions on its covariance function r. Central limit theorems and asymptotic variance formulas are provided for estimators of the square root of the second spectral moment of the process and for the number of maxima in an interval, with some applications in hydroscience. A consistent estimator of the asymptotic variance is proposed for the number of maxima.  相似文献   

12.
Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.  相似文献   

13.
Estimation in partial linear EV models with replicated observations   总被引:4,自引:0,他引:4  
The aim of this work is to construct the parameter estimators in the partial linear errors-in-variables (EV) models and explore their asymptotic properties. Unlike other related references, the assumption of known error covariance matrix is removed when the sample can be repeatedly drawn at each designed point from the model. The estimators of interested regression parameters, and the model error variance, as well as the non-parametric function, are constructed. Under some regular conditions, all of the estimators prove strongly consistent. Meanwhile, the asymptotic normality for the estimator of regression parameter is also presented. A simulation study is reported to illustrate our asymptotic results.  相似文献   

14.
The main objective of this work is the nonparametric estimation of the regression function with correlated errors when observations are missing in the response variable. Two nonparametric estimators of the regression function are proposed. The asymptotic properties of these estimators are studied; expresions for the bias and the variance are obtained and the joint asymptotic normality is established. A simulation study is also included.  相似文献   

15.
This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optimal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also be established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.  相似文献   

16.
In the estimation problem of the mean function of an inhomogeneous Poisson process there is a class of kernel type estimators that are asymptotically efficient alongside with the empirical mean function. We start by describing such a class of estimators which we call first order efficient estimators. To choose the best one among them we prove a lower bound that compares the second order term of the mean integrated square error of all estimators. The proof is carried out under the assumption on the mean function Λ(·) that Λ(τ) = S, where S is a known positive number. In the end, we discuss the possibility of the construction of an estimator which attains this lower bound, thus, is asymptotically second order efficient.  相似文献   

17.
Recursive Estimation of Regression Functions by Local Polynomial Fitting   总被引:1,自引:0,他引:1  
The recursive estimation of the regression function m(x) = E(Y/X = x) and its derivatives is studied under dependence conditions. The examined method of nonparametric estimation is a recursive version of the estimator based on locally weighted polynomial fitting, that in recent articles has proved to be an attractive technique and has advantages over other popular estimation techniques. For strongly mixing processes, expressions for the bias and variance of these estimators are given and asymptotic normality is established. Finally, a simulation study illustrates the proposed estimation method.  相似文献   

18.
This paper studies improvements of multivariate local linear regression. Two intuitively appealing variance reduction techniques are proposed. They both yield estimators that retain the same asymptotic conditional bias as the multivariate local linear estimator and have smaller asymptotic conditional variances. The estimators are further examined in aspects of bandwidth selection, asymptotic relative efficiency and implementation. Their asymptotic relative efficiencies with respect to the multivariate local linear estimator are very attractive and increase exponentially as the number of covariates increases. Data-driven bandwidth selection procedures for the new estimators are straightforward given those for local linear regression. Since the proposed estimators each has a simple form, implementation is easy and requires much less or about the same amount of effort. In addition, boundary corrections are automatic as in the usual multivariate local linear regression.  相似文献   

19.
We construct and investigate a consistent kernel-type nonparametric estimator of the intensity function of a cyclic Poisson process in the presence of linear trend. It is assumed that only a single realization of the Poisson process is observed in a bounded window. We prove that the proposed estimator is consistent when the size of the window indefinitely expands. The asymptotic bias, variance, and the mean-squared error of the proposed estimator are also computed. A simulation study shows that the first order asymptotic approximations to the bias and variance of the estimator are not accurate enough. Second order terms for bias and variance were derived in order to be able to predict the numerical results in the simulation. Bias reduction of our estimator is also proposed.  相似文献   

20.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号