首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

2.
The Gewald reactions of 5‐substituted‐1,3‐cyclohexanedione, malononitrile, and powdered sulfur were carried out to give the corresponding products 2‐amino‐5‐substituted‐7‐oxo‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile derivatives 1 . The intermediate enamines 2 were prepared by reaction of compounds 1 and 5‐substituted‐1,3‐cyclohexanedione with hydrochloric acid as catalyst. The title compounds 11‐amino‐2,8‐substituted‐2,3,8,9‐tetrahydrobenzo[4,5]thieno[2,3‐b]quinolinone 3 were synthesized by cyclization of compounds 2 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

3.
The compounds 5‐ethoxycarbonyl‐1,6‐dimethyl‐4‐(3‐nitrophenyl)‐3,4‐dihydropyrimidin‐2(lH)‐one (5) and 5‐ethoxycarbonyl‐1‐phenyl‐6‐methyl‐4‐(3‐nitrophenyl)‐3,4‐dihydropyrimidin‐2(lH)‐one (1) were prepared by the Biginelli condensation method and they converted to eight N‐3 substituted dihydropyrimidines using NaH and various electrophiles (ClCO2Et, TsCl, Ac2O, AcCl and PhCOCl). Compound (1) was mono‐brominated at the C6‐methyl group using bromine solution. Reaction of the bromo derivative with amino nucleophiles such as methyl amine and cyclohexyl amine produced two pyrrolo‐pyrimidine derivatives. All the compounds except 5‐ethoxycarbonyl‐1‐phenyl‐6‐methyl‐4‐(3‐nitrophenyl)‐3,4‐dihydropyrimidin‐2(lH)‐one ( 4 ) were purified by recrystallization methods. The structure of all the new compounds was confirmed using FT‐ir,1H nmr, 13C nmr spectral and elemental analyses methods.  相似文献   

4.
The novel monosubstituted benzoquinone compounds 3e , 3g , 3h ; 2,5‐O‐ substituted benzoquinone compounds 4a , 4b , 4c , 4d , 4e 4g and known compound 4h and 2,6‐O‐ substituted benzoquinone compounds 5e , 5f , 5g , 5h were obtained by the reaction of p‐chloranil ( 1 ) and related alcohol compounds in potassium carbonate (K2CO3) solution of acetonitrile or chloroform with Et3N. The novel cyclic compounds 7 , 8 and 10 , 11 were obtained from the reaction of p‐chloranil ( 1 ) and diols in potassium carbonate (K2CO3) solution of acetonitrile at room temperature. The structures of novel compounds were characterized by using micro analysis, FT‐IR, 1H‐NMR, 13C‐NMR, MS and cyclic voltammetry.  相似文献   

5.
Conventional and microwave assisted synthesis of new series of N‐[2‐{2‐(substituted phenyl)‐4‐oxo‐5‐(substituted benzylidene)‐1,3‐thiazolidine}‐iminoethyl]‐2‐aminothiazole 5a–5m have been developed. The cycloaddition reaction of thioglycolic acid with N‐{2‐(substituted benzylidenehydrazino)‐ethyl}‐2‐aminothiazole 3a–3m in the presence of anhydrous ZnCl2 afforded new heterocyclic compounds N‐[2‐{2‐(substituted phenyl)‐4‐oxo‐1,3‐thiazolidine}‐iminoethyl]‐2‐aminothiazole 4a–4m . The later product on treatment with several selected substituted aromatic aldehydes in the presence of C2H5ONa undergoes Knoevenagel reaction to yield 5a–5m . The structures of compounds 1 , 2 , 3a–3m , 4a–4m and 5a–5m were confirmed by IR, 1H NMR, 13C NMR, FAB‐Mass and chemical analysis. All above compounds were screened for their antimicrobial activities against some selected bacteria and fungi and antituberculosis study against M. tuberculosis.  相似文献   

6.
We report on a novel method for the preparation of a new series of benzochromeno[2,3‐b]tetrahydroquinolin‐1‐one derivatives. The title compounds are prepared by the 5‐substituted‐1,3 ‐cyclohexanedione and 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile or 2‐amino‐4‐aryl‐4H‐benzo[h]chromene‐3‐carbonitrile using dilute HCl, K2CO3, and Cu2Cl2 as catalysts. The method has the advantages of simple operation, high efficiency, and low toxicity. The structures of all compounds are characterized by elemental analysis, IR, MS, and 1H NMR spectra. Two single crystals are characterized by using X‐ray diffraction.  相似文献   

7.
The 2‐arylidene‐3‐oxobutanenitrile derivatives 2 were prepared by the Knoevenagel condensation between aldehydes and 3‐oxobutanenitrile 1 , which was obtained by acid hydrolysis of β‐aminocrotononitrile. 3‐Acetyl‐2‐amino‐4H‐chromen‐5(6H)‐one derivatives 3 were synthesized by reaction of 2‐arylidene‐3‐oxobutanenitrile 2 and 5‐substituted‐1,3‐cyclohexanedione in ethylene glycol. The 11‐methyl‐3,8‐disubstituted‐12‐aryl‐3,4,7,8,9,12‐hexahydro‐1H‐chromeno[2,3‐b]quinoline‐1,10(2H)‐dione derivatives 4 were obtained by Friedländer reaction of compounds 3 with 5‐substituted‐1,3‐cyclohexanedione, using p‐toluenesulfonic acid monohydrate as catalyst. The structures of all novel compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal and molecular structure of compound 4f has been determined by single crystal XRD analysis.  相似文献   

8.
A series of N‐(ferrocenylmethyl amino acid) fluorinated benzene‐carboxamide derivatives 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i and 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i have been synthesized by coupling ferrocenylmethyl amine 3 with various substituted N‐(fluorobenzoyl) amino acid derivatives using the standard N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. The amino acids employed in this study were glycine and L‐alanine. All of the compounds were fully characterized using a combination of 1H NMR, 13C NMR, 19F NMR, distortionless enhancement by polarization transfer (DEPT)‐135, 1H–1H correlation spectroscopy (COSY) and 1H–13C COSY (heteronuclear multiple‐quantum correlation) spectroscopy. The compounds were biologically evaluated on the oestrogen‐positive MCF‐7 breast cancer cell line. Compounds 4g , 4i , 5h and 5i exhibited cytotoxic effects on the MCF‐7 breast cancer cell line. N‐(Ferrocenylmethyl‐L‐alanine)‐3,4,5‐trifluorobenzene‐carboxamide ( 5h ) was the most active compound, with an IC50 value of 2.84 μm . Compounds 4i , 5h and 5i had lower IC50 values than that found for the clinically employed anticancer drug cisplatin (IC50 = 16.3 μm against MCF‐7). Guanine oxidation studies confirmed that 5h was capable of generating oxidative damage via a reactive oxygen species‐mediated mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A new series of cyclopentyl 3‐(2‐methoxy‐4‐(piperazine‐1‐carbonyl)benzyl)‐1‐methyl‐1H‐indol‐5‐ylcarbamate sulfonyl derivatives were synthesized by the reaclion of 4‐((5‐(cyclopentyloxycarbonylamino)‐1‐methyl‐1H‐indol‐3‐yl)methyl)‐3‐methoxybenzoic acid (ZAK drug intermediate) with Boc piperazine in the presence of EDC?HCl, HOBt, TEA in DMF followed by deboxylation by using 2N HCl or 35 % HCl in acetone to get an intermediate compound. Further, this compound was treated with various substituted benzene sulfonyl chlorides in the presence of TEA in THF to afford title compounds. All the title compounds were characterized by 1HNMR, 13CNMR, IR and mass spectral data. The title compounds and starting material were evaluated for their antioxidant activity by using the DPPH, H2O2 and NO methods. The results revealed that some of the compounds have shown significant antioxidant activity.  相似文献   

10.
PATEL  N. B. AGRAVAT  S. N. 《中国化学》2007,25(9):1363-1369
2-Amino substituted benzothiazole 4a--4I and p-acetamidobenzenesulfonyl chloride 2 were used to prepare 2-(p-aminophenylsulfonamido) substituted benzothiazole 6a--6I using mixture of pyridine and acetic anhydride which formed an electrophilic complex (N-acetyl pyridinium) to facilitate condensation to give desired product by removal of HC1. 2-{p-[(3-Carboxypyrid-2-y1)amino]phenylsulfonamido}benzothiazoles 8a--81 were synthesized from 2-chloropyridine-3-carboxylic acid 7 and 6a--6I in 2-ethoxy ethanol using Cu-powder and K2CO3. Acid chlorides 9a--91 were condensed with 2-hydroxyethyl piperazine 10 and 2,3-dichloropiperazine 11 for amide deriva- tives 2-(p-((3-(4-(2-hydroxyethy1)piperazin-1-ylcarbonyl)pyrid-2-y1)amino)phenylsulfonamido)benzothiazoes 12a -121 and 2-{p-[3-(2,3-dichloropiperazin-l-ylcarbonyl)pyrid-2-ylamino]phenylsulfonamido}benzothiazoles 13a- 131 respectively. The structures of the new compounds have been established on the basis of their chemical analysis and spectral data (IR, 1↑H NMR and mass). All the compounds have been screened for their antibacterial and antifungal activities.  相似文献   

11.
The amino, azido, nitro, and nitrogen‐rich azole substituted derivatives of 1H‐benzotriazole have been synthesized for energetic material applications. The synthesized compounds were fully characterized by 1H and 13C NMR spectroscopy, IR, MS, and elemental analysis. 5‐Chloro‐4‐nitro‐1H‐benzo[1,2,3]triazole ( 2 ) and 5‐azido‐4,6‐dinitro‐1H‐benzo[1,2,3]triazole ( 7 ) crystallize in the Pca21 (orthorhombic) and P21/c (monoclinic) space group, respectively, as determined by single‐crystal X‐ray diffraction. Their densities are 1.71 and 1.77 g cm?3, respectively. The calculated densities of the other compounds range between 1.61 and 1.98 g cm?3. The detonation velocity (D) values calculated for these synthesized compounds range from 5.45 to 8.06 km s?1, and the detonation pressure (P) ranges from 12.35 to 28 GPa.  相似文献   

12.
A series of new, 2‐substituted 3‐aryl‐8,9,10,11‐tetrahydro‐5‐methyl[1]benzothieno[3′,2′ : 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones, compounds 5a – q , were designed and synthesized via the aza‐Wittig reaction as the key step. The iminophosphorane 1 reacted with phenyl isocyanate (or 4‐chlorophenyl isocyanate) to the carbodiimide 4 , which was cyclized to 5 upon addition of different amines, EtOH, or phenols in the presence of a catalytic amount of EtONa or K2CO3 (Schemes 1 and 2). The structures of compounds 5 were confirmed by IR, 1H‐ and 13C‐NMR, EI‐MS, elemental analyses, and, in the case of 5l , by single‐crystal X‐ray diffraction (Figure).  相似文献   

13.
A new class of substituted 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile derivatives catalyzed by Imidazole under mild reaction conditions has been developed. A variety of functionalized 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile scaffolds were assembled in high yields by this catalytic protocol. The newly synthesized compounds have been characterized by IR, 1H NMR, 13C NMR, and mass spectral data. The compounds were then evaluated for antimicrobial activities.  相似文献   

14.
A series of seven nonclassical 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and one classical N‐[4‐(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrimidin‐6‐ylmethyl)benzoyl]‐L‐glutamic acid 9 (Table I) were designed as the first in a series of 6‐substituted 6‐5 fused ring analogs as potential thymidylate synthase (TS) inhibitors and as antitumor agents. The target compounds were synthesized via a Heck coupling of appropriately substituted iodobenzenes and allyl alcohol followed by cyclization using cyanoacetate and sulfur powder to afford substituted thiophenes. The resulting thiophenes were then cyclocondensed with chloroformamidine hydrochloride to afford 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and 26 . Hydrolysis of 26 followed by coupling with diethyl L‐glutamate afforded 28 . The classical analog 9 was obtained by hydrolysis of 28 . None of the target compounds inhibited human recombinant thymidylate synthase at 23 μm except 9 for which the IC50 value was 100 μm.  相似文献   

15.
Seven novel fluorescence‐traced 1‐aryl‐2‐substituted‐3‐allyl‐1H‐benzimidazolium bromides ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) were synthesized by alkylation and quaternization of compounds 1‐aryl‐2‐substituted‐1H‐benzimidazoles ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) with excess allyl bromide in acetonitrile at refluxing temperature. Their structures were characterized by 1H‐NMR, MS, and elemental analysis. They emit violet‐blue light (λEmmax = 386–438 nm) with fluorescence quantum yields of 0.54 to 0.75 in aqueous solution.  相似文献   

16.
In order to find novel bleaching herbicide lead compounds, a series of novel 3‐aryl‐4‐substituted‐5‐[3‐(trifluoromethyl)phenoxy]‐1,2,4‐triazoles were designed and synthesized by the multi‐step reactions. N‐(Arylformamido)phenylthioureas undergo ring closure in the presence of sodium hydroxide to generate 3‐aryl‐4‐substituted‐4H‐[1,2,4]triazol‐5‐thiols 1 , which reacted with methyl sulfate in the presence of K2CO3 to give 3‐aryl‐5‐methylsulfanyl‐4‐substituted‐4H‐[1,2,4]triazoles 2 . The target compounds 4 were synthesized by the oxidation of 2 in the presence of H2O2 and Na2WO4, followed by the substitution with 3‐(trifluoromethyl)phenol in moderate to good yields. Their structures were confirmed by IR, 1H NMR, EI–MS, and elemental analyses. The preliminary bioassay indicated that some of them displayed moderate to good selective herbicidal activity against Brassica campestris L at the concentration of 100 µg/mL. Compounds 4c and 4i possessed 75.0% and 82.6% inhibition against Brassica campestris L at the concentration of 100 µg/mL. However, the target compounds 4 showed weak herbicidal activity against Echinochloa crus‐galli at the concentration of 100 and 10 µg/mL.  相似文献   

17.
Various new substituted and fused pyridotriazepine analogues have been synthesized via different synthetic pathways. Among which are different heterocyclic compounds consisting of the pyridotriazepine backbone fused to different heterocyclic systems comprising either substituted pyrimidine nucleus such as compounds 3 – 9 or substituted 4‐aminopyridine nucleus such as compounds 10 – 16 . Besides, the tetrahydroquinoline derivative 17 , [1,2,4]triazolopyrimidine derivative 18 , thienodiazocine derivative 19 , dihydrobenzofuropyridine derivative 20 , and the substituted pyrrole derivative 21 were synthesized. In addition, different substituted pyridotriazepine derivatives as indicated in compounds 22 – 25 were designed and synthesized. Twenty‐five of the newly synthesized compounds were subjected to in vitro anticancer screening against mammalian colon carcinoma HCT‐116 cell line using Cisplatin as a reference drug. The anticancer activity screening results revealed that among the tested compounds, the tetrahydropyrido[1,2‐b]pyrimido[4,5‐e][1,2,4]triazepine derivative 4 substituted at C2 and C4 positions with S‐methyl and amino moieties, respectively, and the 2,4‐dithioxo analogue 9 and the 2‐thioxodipyrido[1,2‐b:2′,3′‐e][1,2,4]triazepine derivative 11 substituted at C3 and C4 with a cyano and amino moieties, respectively, exhibited moderate to strong anticancer activity against mammalian colon carcinoma HCT‐116 cell line.  相似文献   

18.
In this paper, the syntheses of antimony and nitrogen containing interpnictogen compounds are described. Using tBu2SbCl as reagent, a tert‐butyl‐substituted stibano amine tBu2SbN(H)tBu ( 1 ), an isopropyl‐substituted interpnictogen tBu2SbN(H)iPr ( 2 ), and a primary stibano amine tBu2SbNH2 ( 3 ) are obtained. Condensation of compound 3 leads to compound (tBu2Sb)2NH ( 4 ) with elimination of ammonia. All compounds were characterized by 1H, 13C, 15N NMR spectroscopy, mass spectrometry, and IR spectroscopy. These interpnictogens represent a new class of single‐source precursors for MOVPE process. The primary amine 3 reacts with AlEt3 and GaEt3 to form previously unknown stibane‐substituted [tBu2SbN(H)MEt2]2 ring compounds [M = Al ( 5 ), M = Ga ( 6 )], which were characterized by different spectroscopic methods. Moreover, compounds 4 and 6 could be analyzed by X‐ray diffraction.  相似文献   

19.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

20.
A series of novel 10‐amino‐9‐aryl‐2,3,4,5,6,7,9,10‐octahydroacridine‐1,8‐dione derivatives 4 were synthesized by hydrazine or phenylhydrazine and 9‐aryl‐1,8‐dioxo‐2,3,4,5,6,7,9‐heptahydroxanthene derivatives 3 , which were prepared by 5‐substituted‐1,3‐cyclohexanedione 1 and aromatic aldehydes 2 in the presence of concentrated H2SO4 as a catalyst in water. The structures of all compounds were characterized by IR, MS, 1H‐NMR, and elemental analysis, and the title compounds possess good fluorescence properties. J. Heterocyclic Chem., (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号