首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In attempt to search for more potent antimicrobial agents, a series of 7‐nitro‐1‐(piperidin‐4‐yl)‐4,5‐dihydro‐[1,2,4]triazolo[4,3‐a]quinoline‐derived sulphonamides were synthesized. Their structures were established by elemental analyses, IR, and NMR (1H and 13C) spectral data. The antibacterial activity of the obtained compounds was investigated against different Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) and Gram‐positive (Bacillus subtilis and Staphylococcus aureus) bacteria and antifungal activity against two fungal strains (Aspergillus niger and Aspergillus clavatus) using disk diffusion method at various concentrations (20, 40, 60, and 80 μg/mL). The study reveals that most of the title compounds showed significant antibacterial and fungal activity when compared with their respective standards streptomycin and griseofulvin.  相似文献   

2.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

3.
The synthesis of some 3‐(4‐aryl‐benzofuro[3,2‐b]pyridin‐2‐yl)coumarins 3a–r has been carried out by the reaction of 3‐coumarinoyl methyl pyridinium salts 1a–c with 2‐arylidene aurones 2a–f in the presence of ammonium acetate and acetic acid under Kröhnke's reaction conditions. All the synthesized compounds were characterized by analytical and spectral data. They have been screened for their antibacterial activity against Escherichia coli (ATCC 25922) as Gram‐negative bacteria, Bacillus subtillis (ATCC 1633) as Gram‐positive bacteria and antifungal activity against Aspergillus niger (ATCC 9029).  相似文献   

4.
A series of novel N‐((l‐benzyl‐lH‐l,2,3‐triazol‐5‐yl) methyl)‐4‐(6‐methoxy benzo[d ]thiazol‐2‐yl)‐2‐nitrobenzamide derivatives were prepared from 4‐(6‐methoxybenzo[d ]thiazol‐2‐yl)‐2‐nitro‐N‐(prop‐2‐ynyl) benzamide with benzyl azides by using click reaction (copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction) in the presence of CuSO4.5H2O and sodium ascaorbate. All the newly synthesized compounds were evaluated further in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtillis ), Gram‐negative bacteria (Echerichia coli and Pseudomonas aeuroginosa ), and fungi (Aspergillus niger and Aspergillusfumigatus ) strains. The new compounds were characterized based on spectroscopic evidence. Among them compounds 10a , 10h , and 10i were showed promising activity when compared with standard drugs Ciprofloxacin and Miconazole.  相似文献   

5.
Thiazole and bisthiazole derivatives represent a prevalent scaffold in the antimicrobial drug discovery. Therefore, we have decided to synthesize some new series of 4,5′‐bisthiazoles. A total of 17 compounds were synthesized, their structural elucidation being based on elemental analysis (C,H,N,S) and spectroscopic data (MS and 1H NMR). Their in vitro antimicrobial activities were assessed against several Gram‐positive and Gram‐negative bacteria strains and also against one fungal strain (Candida albicans) using the difusimetric method. Some of the compounds showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus and Bacillus cereus bacterial strains. All of the synthesized compounds showed moderate to very good antifungal activity against C. albicans.  相似文献   

6.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

7.
A series of Pyrido[2,3‐d]pyrimidine have been synthesized through a reaction of cyanoacetylurea derivatives with aromatic aldehydes or Arylidines. Reaction of compound 1 with aromatic arylidine derivatives or arylhydrazones gave Chromeno[3,4‐c]pyridine, Pyridine, Pyrimido[2,3‐c]pyridazine, Enediamines, and Pyridazine derivatives. All the synthesized compounds were confirmed by spectral studies and screened for their in antibacterial activity against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative) bacterial strains. All the compounds were weak to good active against the tested bacterial strains on comparing with the standard drug gentamicin.  相似文献   

8.
A series of novel 2‐(aryl)‐3‐[5‐(2‐oxo‐2H‐3‐chromenyl)‐1,3‐oxazol‐2‐yl]‐1,3‐thiazolan‐4‐ones 4a , 4b , 4c , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and assayed for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538p), Micrococcus luteus (IFC 12708), and Gram‐negative bacteria viz. Proteus vulgaris (ATCC 3851), Salmonella typhimurium (ATCC 14028), Escherichia coli (ATCC 25922), and also antifungal activity against Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), and Trichophyton mentagrophytes (IFO 40996). Among the screened compounds, 4d , 4e , 4f , 4g , and 4j exhibited potent inhibitory activity compared with the standard drug at the tested concentrations. The results reveal that, the presence of difluorophenyl in 4f and pipernyl ring in 4j at 2‐position of thiazolidine‐4‐one ring show significant inhibitory activity. The other compounds also showed appreciable activity against the test bacteria and fungi and emerged as potential molecules for further development. J. Heterocyclic Chem., 2011.  相似文献   

9.
Novel derivatives of pyrano[2,3‐b]pyridine and pyrrolo[2,3‐b]pyrano[2.3‐d]pyridine were prepared, and their structures were elucidated by spectral and elemental analyses. The newly prepared candidates were evaluated for their antimicrobial activity against Candida sp., Aspergillus multi, Aspergillus niger, Escherichia coli, and Staphylococcus aureus. All the tested compounds revealed potent to moderate activity toward all tested microorganisms; especially, candidate 10 showed comparable antifungal activity as that showed by the standard drug ketoconazole toward Candida sp., and ethyl 4‐methyl‐1,7,8,9‐tetrahydropyrano[2,3‐b]pyrrolo[2,3‐d]pyridine‐3‐carboxylate ( 12 ) was the most active compound against all the tested bacteria. Furthermore, the newly synthesized compounds are subjected to molecular docking study for the inhibition of the enzyme L‐glutamine: D‐fructose‐6‐phosphate amidotransferase [GlcN‐6‐P], which is a new target for antimicrobials to explain action mode of these target compounds as leads for discovering other antimicrobial agents.  相似文献   

10.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

11.
《中国化学会会志》2017,64(1):36-42
Substituted‐1,2,4‐triazines were conveniently synthesized in one pot by the cyclization of arylnitroformaldehyde hydrazone derivatives 1 and 5 with different primary amines in ~37% formaldehyde solution. The synthesized compounds were arranged into novel mono‐, bis‐, and tris‐nitro‐1,2,4‐triazine derivatives 2 , 3 , 4 , 6 , and 7 . The antibacterial and antifungal activity of the synthesized compounds were screened against bacterial strains Escherichia coli (as Gram − ve) and Staphylococcus aureus (as Gram + ve), and fungal strains Aspergillus flavus and Candida albicans . All the synthesized compounds exhibit various patterns of inhibitory activity on the two pathogenic bacterial strains. However, the same compounds showed no activity against the tested fungal strains.  相似文献   

12.
A novel series of 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)phenyl)‐2‐substitutedthiazole derivatives ( 8a‐l) have been synthesized by [3 + 2] cycloaddition reaction of 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole with substituted benzyl azide in aqueous DMF. Starting compounds 4‐(4‐ethynylphenyl)‐2‐substitutedthiazole ( 6a‐d ) were synthesized by reaction of 4‐(2‐substitutedthiazol‐4‐yl)benzaldehyde with Ohira‐Bestmann reagent in methanol. The structures of these novel triazole‐thiazole clubbed derivatives were confirmed by the spectral analysis. The title compounds ( 8a‐l ) were tested for antimycobacterial activity against Mycobacterium tuberculosis H37Ra active and dormant (MTB, ATCC 25177) and antimicrobial activity against standard Gram‐positive bacteria, Staphylococcus aureus (NCIM 2602) and Bacillus subtilis (NCIM 2162), and Gram‐negative bacteria, Escherichia coli (NCIM 2576) and Pseudomonas flurescence (NCIM 2059). Compounds 8a , 8b , 8c , and 8h reported good activity against B subtilis, compounds 8a , 8b , and 8c showed good activity against S aureus, and compound 8b showed good activity against dormant M tuberculosis H37Rv strain. Compounds 8b and 8c found more potent against Gram positive and dormant M tuberculosis H37Rv strains. These novel triazole‐thiazole clubbed analogues found to be a capable leads for further optimization and development.  相似文献   

13.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

14.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

15.
A highly competent synthesis of novel 7‐aryl‐10‐thioxo‐7, 10, 11, 12‐tertahydro‐9H‐benzo [H] pyrimido [4, 5‐b] quinoline‐8‐one derivatives has been reported through a Knoevenagel condensation followed by Michael addition and subsequent cyclization using ethanol:acetic acid (8:2 v/v). The mentioned protocol has advantages like high yields, cleaner reactions, operational simplicity, and environment friendliness. Moreover, these compounds were further screened against the plant pathogenic fungi like Colletotrichum truncatum, Ustilago maydis, Trichosporon, Trichothecium sp., Aspergillus oryze, Aspergillus terreus, and Aspergillus niger by agar well method bioassay. The results were elaborated for minimum inhibitory concentration determination using agar dilution method against fungal strains C. truncatum and U. maydis as well as broth dilution method for bacteria species Gram‐positive Bacillus megaterium and Gram‐negative Proteus vulgaris. Most of the tested compounds showed promising results towards the antimicrobial activity.  相似文献   

16.
17.
A series of new 1‐substituted 3, 5‐diarylpyrazolines ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were synthesized in good yield by both conventional and microwave‐assisted synthesis from α, β‐ unsaturated ketones ( 6 , 7 , 8 , 9 ) in n‐butanol and benzothiazole hydrazines ( 2 , 3 , 4 , 5 ). All the new compounds were characterized by IR, NMR, and mass spectral data. The synthesized compounds ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were evaluated for antibacterial and anthelmintic activities. The compounds showed potent anthelmintic activity against earthworm species (Eudrilus eugeniae) and moderate antibacterial activity against bacterial strains such as Gram positive bacteria, Enterococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and Gram negative bacteria, Escherichia coli and Proteus mirabilis.  相似文献   

18.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives have been synthesized by the cyclization of steroidal thiosemicarbazones. Thiosemicarbazones have been synthesized by the reaction of steroidal ketones with thiosemicarbazide. All the compounds have been characterized by IR, 1H NMR, mass and elemental analyses. The antibacterial activities of these compounds have been first tested in vitro by the disk diffusion assay against two Gram‐positive and two Gram‐negative bacteria, and then the minimum inhibitory concentration (MIC) values have been determined with the reference of standard drug amoxicillin. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the anti‐bacterial activity. Among all the compounds, compounds 7 and 8 were found better inhibitors as compared to the respective drug amoxicillin.  相似文献   

19.
A series of multifunctional 2‐amino‐5‐cyano‐4‐[(2‐aryl)‐1H‐indol‐3‐yl]‐6‐hydroxypyrimidines ( 4a , 4b , 4c , 4d , 4e , 4f ) was synthesized by multicomponent reaction of 3‐formylindole ( 1 ), cyanoethylacetate ( 2 ), and guanidine hydrochloride ( 3 ) with NaOH by using green chemical techniques, viz. microwave irradiation and grindstone technology. The same reactants when refluxed in ethanol also gave titled compounds ( 4a , 4b , 4c , 4d , 4e , 4f ). Compared with conventional procedure, the reaction can be carried out under milder conditions, requiring a shorter reaction time and giving higher yields following the green chemistry methodology. All the synthesized compounds have been characterized on the basis of elemental analyses and spectral data (IR, 1H NMR, 13C NMR, and mass). All synthesized compounds were also evaluated for their antimicrobial activity against nine pathogenic bacteria, antifungal activity against Rhizopus stolonifer, Aspergillus flavus, and Fusarium oxysporum and antibacterial activity against Escherichia coli and Pseudomonas aeruginosa at different concentrations. Most of the compounds showed mild to moderate activity.  相似文献   

20.
A series of novel [4‐(1,2,3‐thiadiazol‐4‐yl)phenoxy]methylene anchored 1,3,4‐triazoles ( 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h ) and 1,3,4‐thiadiazoles ( 9a , 9b , 9c , 9d , 9e , 9f , 9g , 9h , 9i ) were synthesized from thiosemicarbazide ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j ). The structures of these newly synthesized compounds were confirmed on the basis of IR, 1H‐NMR, mass spectral techniques, and elemental analysis. The in vitro antimicrobial screenings of the synthesized compounds were carried out against four bacterial pathogens, namely Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and three fungal pathogens Candida albicans, Aspergillus niger and Aspergillus clavatus, using broth microdilution minimum inhibitory concentration method. The compounds 7d , 7j , 8a , 9a , 9b , and 9i exhibited promising antibacterial activity against the tested strains, whereas some compounds were found to be active against one of the tested bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号