首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
扩链剂对脂肪族聚氨酯脲和聚脲弹性体结构与性能的影响   总被引:4,自引:0,他引:4  
杨娟  王贵友  胡春圃 《化学学报》2006,64(16):1737-1742
用异佛尔酮二胺(IPDA)、乙二胺(EDA)和己二胺(HDA)三种扩链剂合成了不同结构的脂肪族聚氨酯脲和聚脲, 并考察了扩链剂对聚氨酯脲和聚脲形态结构与性能的影响. 研究结果表明, 与EDA和HDA扩链的聚氨酯脲和聚脲相比, IPDA扩链的聚氨酯脲和聚脲中脲羰基的氢键化程度较低, 软段和硬段间的相混合程度较好; 同时它们具有更好的拉伸强度、硬度和撕裂强度, 但断裂伸长率较低. EDA和HDA扩链的聚氨酯脲和聚脲相比, 两者性能相差不大. 聚氨酯脲的脲羰基较完善氢键化程度以及整个氢键化程度都比聚脲的要低, 同时聚氨酯脲的吸水率也较低.  相似文献   

2.
聚醚型聚氨酯脲的氢键研究   总被引:6,自引:0,他引:6  
简要评述了近年来有关聚醚型聚氨酯脲氢键研究进展,红外光谱中聚醚型氨酯脲的羰基谱带,特别是脲羰基谱带受化学组成,硬段的结构和制样条件等的影响,而呈现复杂的多重谱带特征,对于这些谱带目前已经作了较系统的归属。  相似文献   

3.
氢键为热塑性聚氨酯弹性体内的重要键合力特征。该文基于氢键所引起基团的频移,以FTIR为主要的研究手段,并结合通过动态力学性能(DMA)研究所建立的评估硬段与软段之间混溶的定量方程,对所合成的以环氧乙烷-四氢呋喃无规共聚醚、2,4-甲苯二异氰酸酯以及1,4-丁二醇为原料的热塑性聚醚聚氨酯弹性体的氢键体系进行了定量化研究。结果表明,大约有30%的硬段混溶进入炊段相对软段的醚氧产生氢键作用,主要的氢键包括硬段羰基与硬段氨基之间的氢键以及硬段烷氧与硬段氨基之间的氢键,仍发生在硬段岛区内。  相似文献   

4.
以不同组成的蓖麻油和二官能度聚醚多元醇 (GE 2 10 )等原料合成了聚氨酯脲 (PUU)水分散液 ,研究了蓖麻油 GE 2 10的组成对PUU膜结构与性能的影响 .结果表明 ,由GE 2 10合成的PUU虽软硬段间存在一定的相容性 ,但其中脲羰基的氢键化程度高 ,硬段形成较好的有序结构 ,导致PUU膜具有较高的拉伸强度及断裂伸长率 ,但弹性模量和硬度下降 .在蓖麻油合成的PUU中脲羰基的氢键化程度及硬段有序结构均受到化学交联结构的抑制 ,故PUU膜的拉伸强度和断裂伸长率降低 ,但弹性模量及硬度较高 .由蓖麻油与GE 2 10在一定的组成范围内合成的PUU膜 ,具有优良的综合平衡的力学性能 ,后者与材料的结构形态相符  相似文献   

5.
变温红外光谱研究多嵌段聚氨脂脲的微相分离行为   总被引:7,自引:0,他引:7  
用傅里叶变换红外光谱方法研究了热处理对由聚环氧丙烷聚醚多元醇、3.5-二乙基甲苯二胺和4,4-二苯基甲烷二异氰酸酯组成的多嵌段聚氨酯脲(SPUU)的微相分离行为的影响.从室温逐步升温到310℃的过程中,氨基甲酸酯键(UT)之间形成的氢键大量解离,而脲键(UA)之间形成的、具有平面状双分叉结构的氢键在130~200℃范围却大量生成;从310℃缓慢冷却到室温后,部分游离的UT重新形成氢键,而硬段之间形成的UA氢键的含量又有所增加.结果表明:高温热处理可以有效地提高SPUU的微相分离程度.  相似文献   

6.
用聚四氢呋喃醚二醇、端羟基超支化聚酯(HB-20)、异佛尔酮二异氰酸酯和1,4-丁二醇,合成了含有超支化结构的聚醚型脂肪族聚氨酯(PU)弹性体.通过Flory-Rehner公式计算了体系的交联密度;用FT-IR、WAXD和DSC表征了超支化PU的氢键化程度和形态.实验结果表明,在PU弹性体中引入少量的HB-20,能提高氨基甲酸酯羰基的氢键化程度和软硬段间的微相分离程度,从而显著提高材料的拉伸强度.由于氢键化程度和交联密度双重效应的影响,含6 wt%HB-20的聚醚型PU与不含HB-20的PU相比拉伸强度提高了2倍多,达到37.9 MPa,断裂伸长率仍高达414%.  相似文献   

7.
通过快速淬火实验,直接观察到聚醚氨酯中由硬段N—H基与软段—O—形成氢键的N—H伸缩振动谱带位于约3295cm~(-1),低于与硬段本身C=O形成氢键的N—H伸缩振动谱带(约3330cm~(-1))。这两种氢键键连的N—H伸缩振动谱带的位置从聚醚氨酯-四氢呋喃溶液的红外光谱得到证实。在此基础上讨论了三种聚醚氨酯试样的红外光谱中N—H伸缩振动谱带的差异。  相似文献   

8.
用傅立叶变换红外光谱法(FTIR)研究交换PUU的结构指出,化学交联键的存在使得氢键化的NH吸收位置向高波数方向移动,同时羰基区内完全有序的氢键化脲羰基(1642cm-1)吸收较弱,完全有序的氨酯羰基(1693cm-1)吸收谱带观察不到.随着温度的升高,氢键化的NH吸收强度逐渐减弱,谱带吸收位置向高波数方向移动.FTIR结果揭示了交联PUU弹性体内部微相混合程度较线性PUU的高,交联PUU弹性体的回弹性在同温度下小于线性PUU的回弹性,随温度的升高,交联PUU弹性体极性键间的氢键化作用较易破坏,分子的柔顺性增加较快,交联PUU的回弹性增加幅度较大.交联密度越大,回弹性越小,压缩生热越大.硬段含量越高,材料的生热现象越严重.扩链剂的用量增加,对交联PUU的回弹性和压缩生热影响不大,但它显著地改善了PUU的疲劳性能.  相似文献   

9.
溶剂在丁腈基聚氨酯中的溶解和扩散   总被引:2,自引:0,他引:2  
用石英弹簧法和示差扫描量热法 (DSC)、红外分光光度计 (FTIR)研究了苯、乙醇、丙酮、醋酸乙酯和1,2 二氯乙烷五种溶剂在端羟基聚丁二烯 丙烯腈共聚物为软段的聚氨酯中的溶解和扩散行为 .结果表明所有溶剂在丁腈聚氨酯中的扩散均为非费克扩散 ,且随着溶剂蒸汽压增大偏离费克扩散的程度增大 .相同相对蒸汽压下 1,2 二氯乙烷和醋酸乙酯偏离费克 (Fickian)扩散的程度较大 ,而乙醇、丙酮和苯则较小 ,这主要与它们和丁腈软段溶解度参数的极性分量和氢键分量有关 .1,2 二氯乙烷和苯在HTBN PU中的溶解度较高 ,而乙醇 ,醋酸乙酯和丙酮较低 ,主要与它们和丁腈软段溶解度参数的色散分量有关 .所有溶剂均表现出近似Flory Huggins型等温吸收曲线 .红外表明吸收溶剂后 ,氨基甲酸酯基团的氢键化程度有不同程度的下降 ,和溶剂与之形成氢键的能力大小有关 .力学性能表明非极性溶剂苯对材料的力学性能影响较小 ,而乙醇 ,醋酸乙酯和丙酮由于可与氨酯基团形成氢键 ,对原HTBN PU中氨酯键氢键的破坏大 ,力学性能下降大  相似文献   

10.
聚氨酯/Al2O3纳米复合材料的制备和性能   总被引:4,自引:0,他引:4  
采用原位聚合法制备聚氨酯(PU)/Al2O3纳米复合材料.DSC和FT-IR测试结果表明:PU/Al2O3纳米复合材料中的氨酯羰基氢键化程度和硬段的有序化程度较纯PU低,且PU软硬段间有更好的相混合程度;TEM照片显示:Al2O3以纳米尺寸较均匀地分散在PU体系中,且纳米Al2O3粒子与PU基体有较强的界面作用;力学性能测试结果表明:少量纳米Al2O3粒子的加入,对PU材料有很好的增强和增韧效果.  相似文献   

11.
聚氨酯弹性体相分离程度的研究   总被引:3,自引:0,他引:3  
热塑型聚氨酯弹性体(TPUE)的动态力学性能和热性能研究已有许多报导,但多集中于弹性体的链结构及其组成等方面,本文则侧重于研究聚醚氨酯(ET)和聚酯氨酯的相分离过程及其程度,考察硬段含量(W_h)和软段分子量(M_(n·3)等因素对微相结构的影响。  相似文献   

12.
采用热重分析仪(TG)和差示扫描量热仪(DSC)对自制的超支化聚氨酯(HPU)和UV固化超支化聚氨酯丙烯酸酯(HPUA)在不同气氛下的热失重行为和玻璃化转变温度(Tg)进行分析,在此基础上,结合热重红外联用仪(TG-FTIR)探究了HPU和HPUA的热分解机理。热重分析结果表明:HPU和HPUA在氮气气氛下具有相似的热分解行为,均有3段热分解温度;在空气气氛下的热分解与氮气气氛下的热分解相比,其分解行为相似,但前者的分解更迅速。DSC分析表明:接入丙烯酸羟乙酯(HEA)后,HPUA的Tg明显低于HPU。热红联用对热分解机理的分析表明:空气气氛下的分解比氮气气氛下更迅速,降解更完全。HPU的3段热分解分别为:醇的降解、氨基甲酸酯键的降解、脲基键的降解;HPUA的3段热分解分别为:丙烯酸羟乙酯的降解、氨基甲酸酯键的降解、脲基键的降解。  相似文献   

13.
油墨用聚氨酯树脂的研究   总被引:6,自引:0,他引:6  
研究用于印刷油墨的单组分溶剂型聚氨酯树脂,考查聚合物多元醇和异氰酸酯对树脂微观形态、机械性能以及印刷适应性和附着性等性能的影响。结果表明:聚酯型树脂的附着性较好,4,4-二甲苯甲烷二异氰酸酯(MDI)基树脂的附着性较佳。  相似文献   

14.
以自制的聚酯多元醇(PPMBA)、甲苯二异氰酸酯(TDI)、1,6-六亚甲基二异氰酸酯(HDI)、二羟甲基丙酸(DMPA)合成聚氨酯预聚体,再用丙烯酸酯类单体代替有机溶剂对预聚体降黏,封端预聚体后中和分散乳化得包含丙烯酸酯类单体的聚氨酯乳液.向乳液中加入引发剂引发自由基聚合得到复合乳液,最后再加入乙烯基类单体及引发剂合成三层核壳结构的聚丙烯酸酯/聚氨酯复合乳液.研究表明,二异氰酸酯的-NCO与聚酯多元醇中的-OH的物质的量之比(R值)为1.6~4之间时,随R值增加,乳液稳定性增强;DMPA含量在4%~7%的范围内,随DMPA含量的降低,乳胶膜的耐水性提高.通过红外光谱对所合成聚酯多元醇及复合乳液结构进行表征.  相似文献   

15.
合成和表征了丙烯酸基蓖麻油氨基甲酸酯齐聚物(VTPU)。证明:2,4-甲苯二异氰酸酯(2,4-TDI)与丙烯酸羟乙酯(HEA)封端反应生成丙烯酸基单异氰酸酯(IPT)为二级反应。同样,ITP与蓖麻油(CAO)扩链反应亦为二级。通过对缩合反应速率常数和表观活化能的研究表明:VTPU的结构主要由2,4-TDI中对位和邻位二异氰酸基的活性差异所控制,而齐聚物表观粘度与二异氰酸酯的结构规整性有关。动态粘弹谱测试表明:当VTPU中硬链段含量为59%时,聚合物呈分相结构,抗张强度最高为18.2MPa,若增加至67%时,在100.7℃呈现单一转变峰,动态模量因而下降。  相似文献   

16.
制备了以聚丙交酯(PLA)为软段, 2,4-甲苯二异氰酸酯(TDI)与乙二醇(EG)反应产物为硬段的多嵌段聚氨酯(PLA-PU), 并对其形状记忆效应和生物相容性进行了研究. 形状压缩50%的样品从起始恢复温度(22~37 ℃)开始, 在10 ℃范围内可以恢复到起始形状, 形变恢复率接近100%, 形变恢复力最大值达到1.5~4 MPa. 细胞培养实验结果初步证明PLA-PU的细胞相容性与PLA相当, 因而有可能用作植入形状记忆医疗器械材料.  相似文献   

17.
单组分聚氨酯清漆的制备与性能研究   总被引:1,自引:0,他引:1  
不同的聚碳酸酯二元醇、聚四亚甲基醚二醇(PTMG)与二苯甲烷二异氰酸酯(MDI)、小分子二元醇反应,制得聚醚、聚碳酸酯型聚氨酯清漆。通过红外光谱分析结合其机械力学性能、耐水性等的测试结果,探讨聚碳酸酯型聚氨酯清漆的结构对形态和性能的影响。结果表明:随着硬段含量的增加,树脂涂膜的微相分离程度增加,机械性能提高;组分摩尔比例相同时,软段分子量的降低有利于提高树脂的软硬段相容性,增加树脂涂膜的物理机械性能;组分摩尔比例相同时聚酯型聚氨酯树脂的微相分离程度低于聚醚型聚氨酯树脂;MDI基溶剂型聚氨酯树脂的物理机械性能较好。  相似文献   

18.
陈雷  黄诚 《高分子学报》1996,(5):559-564
以氨丙基封端聚二甲基硅氧烷及脲键改性聚硅氧烷低聚体分别与4,4-二异氰酸酯二苯甲烷(MDI)反应,并用1,4二(2-羟乙基)-呱嗪(N)扩链,合成了一系列含氮杂环聚氨酯共聚物。产物为透明热塑性弹性体,具有良好的成膜性能和宽阔的使用温区,通过碘乙烷和γ-丙磺酸内酯对上述样品进行季铵化,合成了阳离子型及双离子型离聚物。用傅里叶红外光谱(FT-IR)、示差量热分析(DSC)、动态力学谱(DMTA)、力学性能等方面对样品进行了表征。结果表明,在聚硅氧烷中引入脲键,提高了软、硬段两相的相容性。体系中既有软段间的氢键作用又有两相间的氢键作用,从而使这类材料的杨氏模量、抗张强度和断裂伸长均明显高于相应的聚二甲基硅氧烷聚脲聚氨酯体系。  相似文献   

19.
丁苯、丁腈基聚氨酯的形态与性能   总被引:2,自引:0,他引:2  
用示差扫描量热法 (DSC)、红外分光光度计 (FTIR)和原子力显微镜 (AFM)研究了端羟基聚丁二烯 苯乙烯共聚物 (HTBS)、端羟基聚丁二烯 丙烯腈共聚物 (HTBN)和端羟基聚丁二烯 (HTPB)与甲苯二异氰酸酯、1 ,4 丁二醇构成的溶液法聚二烯烃基聚氨酯 (PU)的形态结构 .结果表明HTPB和HTBS基PU的相分离程度很大 ,而HTBN基PU的相分离程度小 .这可能归因于HTBS软段的极性低 ,不能与硬段形成氢键 ,而HTBN软段中的腈基具有很强的极性 ,且可以与硬段形成氢键作用 ,增加了软硬段间的相容性 ,相分离程度明显降低 .AFM表明HTBN PU随着硬段含量提高 ,表面粗糙度增大 ,由软段为连续相逐渐过渡到双连续结构 .在硬段含量 6 3%时 ,HTBN和HTPB基PU均呈双连续结构 ,而HTBS PU中硬段为连续相 .HTBN PU软段的相区尺寸在1 2nm左右 ,表面粗糙度较大 ,HPBS PU软段的相区尺寸在 1 1nm左右 ,表面粗糙度最小 ,HTPB PU存在 1 4nm和 5 0nm大小不等的软段相区尺寸 .力学性能表明 ,在软段中引入苯乙烯和丙烯腈结构 ,可使聚氨酯抗张强度分别提高 1 5和 2倍 ,模量和断裂伸长率也明显提高  相似文献   

20.
郭晓战  赵根锁 《应用化学》1992,9(2):111-114
聚氨酯(PU)的微区结构和宏观力学性能之间的关系是PU的一个重要课题。本文用动态力学方法对基于4,4'-二苯基甲烷二异氰酸酯(MDI),乙二胺(ED)和聚已二酸丁二醇酯(PBA)的嵌段聚酯型聚脲氨酯(PUU)弹性体进行了研究,探讨了不同软段分子量和硬段  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号