首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The processing of synthetic material by injection molding machines and extruders produce wear on metal surfaces being in contact with the synthetic material. The corrosion in the melting areas of such machines depends on the chemical and morphological properties of the steel surface. The processing generates chemical changes which can be monitored by means of surface analysis methods. We examined different steels — containing Cr, Mo and V — which were corroded by various melts of synthetic materials. AES, ESCA and SIMS measurements show that some components especially chromium, play a key role for the corrosion process. Corrosion at the surface causes changes of the chemical composition along varying depths (100 – 300 Å). The knowledge of the correlation between chemical changes and surface properties will be helpful for choosing adequate alloys for synthetic material processing machines.  相似文献   

2.
Laser controlled melting of metal surface provides a local treatment with improved surface properties such as corrosion resistance. In the present study, laser surface treatment of iron base superalloy (A286) is carried out. The corrosion resistance of the laser‐treated surface is examined through potentiodynamic tests using 0.5 N NaCl solution. The microstructural and morphological changes in the laser‐treated layer are investigated incorporating scanning electron microscopy (SEM), X‐ray diffraction (XRD) and energy dispersive spectroscopy. The residual stress formed at the laser‐treated surface is measured using the XRD technique. It is found that laser treatment enhances corrosion resistance of A286 superalloy surface, which is attributed to the formation of fine grains and dense layer at the treated surface. Although locally scattered few corrosion induced microcracks are observed at the treated surface, they are not extended to form large cracks or crack network at the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
陆原  刘鹤霞  赵景茂 《电化学》2007,13(3):242-248
应用电化学弱极化法和原子力显微镜(AFM)研究了咪唑啉衍生物类缓蚀剂在模拟深层气井水溶液中对碳钢的二氧化碳腐蚀的抑制效果和缓蚀作用机理.结果表明,在不同的实验温度下,该缓蚀剂均具有较好的缓蚀性能,属于以抑制阳极为主的混合型缓蚀剂.该咪唑啉衍生物在碳钢表面上的吸附遵从Langm iur方程.计算了该腐蚀体系热力学参数(ΔH°、ΔG°和ΔS°)以及腐蚀反应的活化能(Ea)和指前因子(A),并解释了实验结果.  相似文献   

4.
A joint analysis of the results of electrochemical studies and the evolution of the parameters of a sodium chloride solution droplet in contact with the coating under test reveals the pattern of changes in the surface state which result from the electrochemical reactions and adsorption-desorption processes at the coating/electrolyte interface. Features of the corrosion process are studied on titanium samples with different protective layers on the surface: (1) a natural oxide, (2) a coating prepared via plasma electrolytic oxidation (PEO coating), (3) a PEO coating with a hydrophobic layer, and (4) a PEO coating with a superhydrophobic nanocomposite layer. The best protective properties in a chloride-containing electrolyte are exhibited by the superhydrophobic nanocomposite coating. The mechanism of corrosion protection of this coating is formulated.  相似文献   

5.
The transport behaviour of fission products in HTGR-fuel element graphite may be latered by changes of the pore structure of the graphite due to corrosion. The corrosion rate was measured at temperature between 850 and 900 °C in a CO2 atmosphere by a thermogravimeric method. Surface area and pore size distribution were determined before and after corrosion by measuring nitrogen adsorption isotherms at 77 K. The corrosion rate remained constant regardless of the pronounced increase in the specific surface area.  相似文献   

6.
Silver iodide-based electrodes allow indirect measurements of cyanide. Potentiometric investigations and theoretical studies have suggested that a corrosion process is responsible for this cyanide response. Surface analytical methods of providing information at different depths are used to investigate mixed membranes of silver iodide/silver sulphide and pure silver iodide membranes. The results prove that in the surface corrosion process the iodide content of the mixed membrane surface decreases. Further, the membrane loses silver sulphide particles from its surface. Finally, a layer enriched with readsorbed iodide is formed on the outermost surface of the membrane. The composition of the surface layer depends on pH and buffer capacity because of the different fluxes of ions observed in the surface layer.  相似文献   

7.
Dealloying is widely utilized but is a dangerous corrosion process as well. Here we report an atomistic picture of the initial stages of electrochemical dealloying of the model system Cu(3)Au (111). We illuminate the structural and chemical changes during the early stages of dissolution up to the critical potential, using a unique combination of advanced surface-analytical tools. Scanning tunneling microscopy images indicate an interlayer exchange of topmost surface atoms during initial dealloying, while scanning Auger-electron microscopy data clearly reveal that the surface is fully covered by a continuous Au-rich layer at an early stage. Initiating below this first layer a transformation from stacking-reversed toward substrate-oriented Au surface structures is observed close to the critical potential. We further use the observed structural transitions as a reference process to evaluate the mechanistic changes induced by a thiol-based model-inhibition layer applied to suppress surface diffusion. The initial ultrathin Au layer is stabilized with the intermediate island morphology completely suppressed, along an anodic shift of the breakdown potential. Thiol-modification induces a peculiar surface microstructure in the form of microcracks exhibiting a nanoporous core. On the basis of the presented atomic-scale observations, an interlayer exchange mechanism next to pure surface diffusion becomes obvious which may be controlling the layer thickness and its later change in orientation.  相似文献   

8.
覆铜板在NaCl溶液中的腐蚀电化学行为   总被引:2,自引:0,他引:2  
应用线性极化、循环伏安(CV)及电化学阻抗谱(EIS)等电化学方法对覆铜板(CCL)和纯铜的腐蚀电化学行为进行了研究和比较. 结果表明, 覆铜板的耐蚀性弱于纯铜, 其阳极溶解过程与纯铜有所不同; 在较低电位下, CCL 以铜的氯化络合物的形式溶解, CuCl-2的扩散为该过程的控制步骤; 随着电位的升高, 腐蚀产物CuCl在电极表面形成疏松多孔的膜, Cl-在膜中的传输成为溶解过程的控制步骤. 电极表面CuCl 膜的消长过程是产生感抗弧的主要原因.  相似文献   

9.
A detailed surface analytical study on the corrosion behavior of unprotected and diamond-like carbon (DLC)-coated mid-infrared (MIR) waveguides used in remote sensing applications at strongly oxidizing conditions is presented. High-quality DLC films, with a thickness of 100 nm serving as MIR-transparent corrosion barrier, have been produced at the surface of zinc selenide (ZnSe) attenuated total reflection waveguides via pulsed laser deposition techniques. IR microscopy and atomic force microscopy are applied to investigate the chemical inertness of DLC-based membranes against aqueous solutions of hydrogen peroxide. These stability studies show that uncoated ZnSe waveguides are subject to severe chemical surface modifications, while DLC-protected waveguides maintain their optical properties and chemical integrity. In situ studies on the corrosion behavior by a recently developed approach combining scanning electrochemical microscopy (SECM) with Au/Hg amalgam ultramicroelectrodes in a scanning stripping voltammetry experiment provides additional insight into the mechanisms of the corrosion process. It is demonstrated that the combination of surface analytical techniques and, in particular, the innovative application of SECM with amalgam electrodes provides superior information on corrosion processes at the surface of optical waveguides. This detailed study confirms the efficiency of protective DLC coatings deposited onto IR-transparent optical waveguides, rendering this novel concept ideal for sensing applications in harsh environments.  相似文献   

10.
Superhydrophobic ceria on the aluminum substrate was fabricated, and its corrosion resistance was investigated by different techniques. For example, the so‐obtained superhydrophobic sample was immersed into the NaCl aqueous solution, and the variations in the surface wettability as well as the surface morphology were monitored; potentiodynamic polarization in the NaCl aqueous solution was adopted to evaluate its electrochemical corrosion resistance; a droplet of the aqueous solution HCl was dripped onto the superhydrophobic surface, and the corrosion process as well as the surface morphology after corrosion was monitored. The experimental results showed that the superhydrophobic ceria possessed a good corrosion resistance because of the entrapped air in the solid/liquid interface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Microbiologically influenced corrosion (MIC) of stainless steel 304 by a marine aerobic Pseudomonas bacterium in a seawater-based medium was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM was used to observe in situ the proliferation of a sessile Pseudomonas cell by binary fission. The development of a biofilm on the coupon surface and the extent of corrosion damage beneath the biofilm after various exposure times were also characterized by AFM. Results showed that the biofilm formed on the coupon surface increased in thickness and heterogeneity with time, and thus resulting in the occurrence of extensive micro-pitting corrosion; whilst the depth of pits increased linearly with time. The XPS results confirmed that the colonization of Pseudomonas bacteria on the coupon surface induced subtle changes in the alloy elemental composition in the outermost layer of surface films. The most significant feature resulting from microbial colonization on the coupon surface was the depletion of iron (Fe) and the enrichment of chromium (Cr) content as compared to a control coupon exposed to the sterile medium, and the enrichment of Cr increased with time. These compositional changes in the main alloying elements may be correlated with the occurrence of extensive micropitting corrosion on the surface.  相似文献   

12.
边丽  翁永基  许述剑 《化学通报》2006,69(3):207-210
腐蚀是一种复杂随机现象,可以用分形理论更好地描述。本文根据分形动力学过程,以一组基于不同表面条件下的腐蚀发生概率为参数,建立计算机模型来预测大气、土壤环境的金属腐蚀过程。计算结果和实际腐蚀特征吻合一致。此外,本文还讨论了幂函数腐蚀模型中指数n和各种腐蚀概率之间的定量关系,揭示了腐蚀发展规律。  相似文献   

13.
Localized corrosion of stainless steel beneath the barnacle-base is an unsolved issue for the marine industry. In this work, we clearly bring out for the first time the role of the barnacle cement in acting as an etchant, preferentially etching the grain boundaries, and initiating the corrosion process in stainless steel 316L. The investigations include structural characterization of the cement and corroded region, and also chemical characterization of the corrosion products generated beneath the barnacle-base. Structural characterization studies using scanning electron microscopy (SEM) reveals the morphological changes in the cement structure across the interface of the base-plate and the substrate, modification of the steel surface by the cement and the corrosion pattern beneath the barnacle-base. Fourier transform infrared spectroscopy (FTIR) of the corrosion products show that they are composed of mainly oxides of iron thereby implying that the corrosion is aerobic in nature. A model for the etching and corrosion mechanism is proposed based on our observations.  相似文献   

14.
Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper, we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper carboxylates onto the electrode. The modified electrodes have been characterised with infrared spectroscopy. In addition, the corrosion resistance of the film has been investigated using polarisation resistance and Tafel plot measurements.  相似文献   

15.
程璇  林昌健 《电化学》2001,7(2):189-194
化学机械抛光 (CMP)技术是同时利用化学和机械作用来获得固体表面亚微米尺度上平整性非常有效的方法 ,从 90年代初期起已成为制备高质量镜头和镜面及集成电路制造过程中硅片表面预处理工艺中最常用的技术之一 .钨的化学机械抛光是用钨坯获得硅片球面平整度的重要工艺 .其过程实际上是先将钨沉积到硅上已有的薄粘附层 -氮化钛上 ,然后进行化学机械抛光 .当抛光阶段接近终了时 ,氮化钛和钨表面将同时暴露在化学抛光液中形成电偶对 ,并在界面上发生腐蚀行为 ,从而影响硅片的球面平整度 ,降低半导体器件的性能与可靠性 .本文通过采用电化学直流极化技术 ,分别获得钨与氮化钛在 0 .0 1mol/LKNO3溶液中或含有三种典型的研磨剂 (H2 O2 ,KIO3,Fe(NO3) 3)溶液中的极化曲线 ,同时设计了一种特殊的电解槽以测量钨和氮化钛之间相互作用的电流 ,初步研究了 patterned硅片上钨和氮化钛界面形成电偶对时的腐蚀行为 .根据所测的钨和氮化钛电位可知 ,当钨和氮化钛表面同时暴露在抛光液中时将形成电偶对 ,氮化钛成为阴极 ,钨为阳极 ,并于界面发生电化学反应 ,表面的不均匀腐蚀将造成硅片平整度的降低 .结果表明 ,当溶液中含有H2 O2 时钨和氮化钛界面的腐蚀速度最大 ,而当溶液中含有Fe(NO3) 3时的钨和氮化钛界面则几乎不发  相似文献   

16.
The electrochemical impedance spectroscopy technique was used to investigate the interfacial behavior of beta-lactoglobulin at an austenitic stainless steel surface over the temperature range 299 to 343 K at an open circuit potential. The electrode/electrolyte interface and corresponding surface processes were successfully modeled by applying an equivalent-electrical-circuit approach. A charge-transfer resistance value was found to be very sensitive to the amount of adsorbed protein (surface concentration), thus indicating that the adsorption of the protein (i) was accompanied by the transfer of the charge, via chemisorption, and (ii) influenced the mechanism and kinetics of the corrosion reaction. This was also apparent from the large decrease in the corrosion activation energy (16 kJ mol(-1)) caused by the adsorption of the protein. Adsorption of beta-lactoglobulin onto the stainless steel surface at an open circuit potential resulted in a unimodal isotherm at all the temperatures studied and the adsorption process was described with a Langmuir adsorption isotherm. From the calculated Gibbs free energies of adsorption it was confirmed that beta-lactoglobulin molecules adsorb strongly onto the stainless steel surface. The enthalpy and entropy values indicated that the molecule partially unfolds at the surface upon adsorption. The adsorption process was found to be entirely governed by the change in entropy. Copyright 2000 Academic Press.  相似文献   

17.
Potentiodynamic anodic polarisation and dynamic electrochemical impedance spectroscopic (DEIS) measurements were carried out on 316L stainless steel and alloys 926 and 31 in natural seawater in order to assess the crevice corrosion resistance. DEIS measurements were performed over a wide range of potentials covering the corrosion potential, passive region, breakdown region and dissolution region. The impedance measurements in potentiodynamic conditions clearly reveal the changes that occur in the passive layer with change in potential. The impedance spectra at different potential regions were also discussed elaborately. The surface morphology of the alloy after crevice corrosion was studied using optical microscope and atomic force microscopy.  相似文献   

18.
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.  相似文献   

19.
2-Mercapto-1-methylimidazole (MMI) has been evaluated as a corrosion inhibitor for cold rolled steel in aerated 2 M H2SO4 by gravimetric method. The effect of MMI on the corrosion rate was determined at various immersions time and concentrations. The effect of the temperature on the corrosion behaviour with addition of different concentrations of MMI was studied in the temperature range 30–60 °C. The MMI acts as an effective corrosion inhibitor for cold rolled in sulphuric acid medium. The inhibition process is attributed to the formation of an adsorbed film of MMI on the metal surface which protects the metal against corrosion. The protection efficiency increased with increase in inhibitor concentration at various immersions time and decreased with increase in temperature. Adsorption of MMI on the cold rolled steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined.  相似文献   

20.
《印度化学会志》2021,98(6):100079
A new novel organic corrosion inhibitor N-[4-(1,3-benzo[d]thiazol-2-ylcarbamoyl)phenyl]quinoline-6-carboxamide (NBCPQC) has been synthesized. The synthesized novel organic inhibitor NBCPQC used to be carried out on mild steel corrosion in 1N HCl for the first time. The studied inhibitor was once evaluated as corrosion inhibitor for mild steel in 1N of HCl solution using electrochemical research which advocated that a protective film is form by the process of inhibitor absorption on the surface of mild steel. Inhibitor shows a better inhibiton efficiency of maximum above 90% in 1N HCl medium. Inhibitors show a better efficiency by way of reducing and sluggish down the corrosion process however on growing the temperature it is weakened on controlling corrosion. In addition to this adsorption isothermal models had been interpreted to fit the adsorption behaviour of the inhibitor compound on mild steel surface. Thus the result reveals that the compound shows a Langmuir adsorption isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号