首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用程序升温电导法(TPEC)和程序升温还原法(TPR),研究比较了还原气氛下Pt/MoO_3和Pt/Co_3O_4体系中不同类型的半导体氧化物和吸附氢之间电荷和物种交换的规律.发现微量Pt通过吸附解离H_2成为原子氢,在较低温度下大大加快n型半导体氧化物MoO_3和氢之间电子传递速度,显著地降低MoO_3的还原温度,但在同样条件下却不能有效地活跃p型半导体氧化物Co_3O_4和氢之间的电子传递,因而不能明显地促进Co_3O_4的还原.导致此现象的原因,可能与不同类型的半导体导电机构不同而引起的对氢的敏感程度不同有密切关系.  相似文献   

3.
Rates and selectivities for the oxidation of various organosulfur compounds with tert-butyl hydroperoxide were measured on CoAPO-5 (APO = aluminophosphate; Co/P = 0.05), Co/H-Y (Co/Al = 0.15), and MoO(x)/Al2O3 (15 % wt MoO3). Rates increased with increasing electron density at the sulfur atom (methyl phenyl sulfide>diphenyl sulfide>4-methyldibenzothiophene>2,5-dimethyl thiophene). Rates (per metal atom) were significantly higher on CoAPO-5 than on Co/H-Y, MoO(x)/Al2O3, or homogeneous Co acetate catalysts. Small amounts of sulfoxides (1-oxide) were detected on all catalysts at low reactant conversions, together with their corresponding sulfones; at higher conversions, only sulfones (1,1-dioxide) were detected, indicating that the oxidation of sulfoxides is much faster than for organosulfur reactants in the sequential oxidation pathways prevalent on these catalysts. Framework Co cations were not leached from CoAPO-5 during the oxidation of 4-methyldibenzothiophene, but most exchanged Co cations in H-Y and >20 % of Mo cations in MoO(x)/Al2O3 were extracted during these reactions. The fraction of redox-active Co cations in CoAPO-5 and Co/H-Y was measured by reduction-oxidation cycles using H2 and O2 and by UV-visible spectroscopy. This fraction was much larger in CoAPO-5 (0.35) than in Co/H-Y (0.01), consistent with the higher oxidation rates measured on CoAPO-5 and with the involvement of redox-active species in kinetically-relevant steps in catalytic oxidation sequences. Redox-active Co cations at framework positions within accessible channels are required for catalytic activity and structural stability during oxidative desulfurization, whether hydroperoxides are used as reactants or as intermediates (when O2 is used as the oxidant).  相似文献   

4.
A CoMo/gamma-Al(2)O(3) catalyst, prepared by depositing on the Al(2)O(3) carrier first the Mo species via equilibrium deposition filtration (EDF) and then the Co species by dry impregnation, was compared to three CoMo/gamma-Al(2)O(3) samples prepared using various conventional impregnation methods. All samples had the same composition, corresponding to an atomic ratio Co/(Co+Mo) equal to 0.3. The above samples were characterized using various physicochemical techniques (AAS, BET, DRS, LRS, XPS, TPR, and NO chemisorption), and their catalytic activity was determined using the hydrodesulfurization (HDS) of thiophene as a probe reaction. The EDF-prepared catalyst was about 30-43% more active in HDS than those prepared with the conventional impregnation techniques at all reaction temperatures studied. In contrast, the EDF catalyst exhibited the lowest hydrogenation activity. The higher HDS activity of the EDF sample is attributed to the higher number of active HDS sites formed on its surface. It is concluded that the increased number of active sites is due to the fact that the deposition of the Mo species by EDF results to a higher coverage of the support surface by supported molybdenum phase, which in turn, inhibits the formation of the catalytically inactive CoAl(2)O(4) and favors the dispersion of octahedral cobalt on its surface.  相似文献   

5.
A series of CoMo/gamma-Al(2)O(3) catalysts have been prepared using various methodologies. One of them (EDF) was prepared by depositing the Mo species on the support via the equilibrium deposition filtration (EDF) technique and then the Co species by dry impregnation. Another catalyst (co-EDF) was prepared by depositing the Co and Mo species simultaneously via EDF. A third catalyst (co-WET) was prepared by depositing Mo and Co species simultaneously using the wet impregnation method. The fourth catalyst (WET) was prepared by depositing the Mo species through wet impregnation and then the Co species by dry impregnation. Finally, the fifth catalyst (s-DRY) was prepared by mounting the Mo species through successive dry impregnations and then the Co species by dry impregnation. In all cases the Mo and Co content was identical, giving a Co/(Co+Mo) ratio equal to 0.13. These catalysts were characterized using various physicochemical techniques (BET, NO chemisorption, DRS, LRS, TPR, and XPS), and their catalytic activity for the hydrodesulfurization of thiophene was determined. The trend observed for the HDS activity (namely, EDF>co-EDF>co-WET>s-DRY>WET) is attributed to similar trends observed for both the fraction of well-dispersed octahedral cobalt in the oxidic precursors and the concentration of the edge sulfur vacancies formed on the active phase of the sulfided samples. The EDF and co-EDF catalysts exhibited relatively low hydrogenating activity. The maximum HDS activity, achieved over the EDF catalyst, suggested the most suitable preparative strategy for the preparation of very active and less hydrogen-demanding CoMo/gamma-Al(2)O(3) HDS catalysts.  相似文献   

6.
Novel highly active FSM-16 supported molybdenum catalyst for hydrotreatment   总被引:1,自引:0,他引:1  
FSM-16 (Folded Sheet Silica) supported catalysts could accommodate 12 wt% Mo (18% MoO(3)) as a monolayer with higher dispersion than any other silica support; these catalysts showed outstanding HDS and HYD activities compared to gamma-Al(2)O(3), amorphous silica, and other mesoporous silica supported catalysts.  相似文献   

7.
Analytical studies have found an enrichment of the lighter Mo isotopes in oxic marine sediments compared to seawater, with isotope fractionation factors of -1.7 to -2.0 per thousand for Delta97/95Mosediment-seawater. These data place constraints on the possible identities of dissolved and adsorbed species because the equilibrium isotope fractionation depends on the energy differences between the isotopomers of the adsorbed species, minor dissolved species, and the dominant solution species, MoO42-. Adsorption likely involves molybdic acid, whose structure is indicated by previous studies to be MoO3(H2O)3. Here we used DFT calculations of vibrational frequencies to determine the isotope fractionation factors versus MoO42-. The results indicate that isotope equilibration of MoO42- with MoO3(H2O)3, yielding Delta97/95Momolybdic acid-molybdate=-1.33 per thousand, is most likely responsible for the isotope fractionation of Mo between oxic sediments and seawater. The difference between the calculated value of Delta97/95Momolybdic acid-molybdate for MoO3(H2O)3 and the value observed in natural sediments and experiments is probably due to effects of solvation and adsorption onto the manganese oxyhydroxide surface.  相似文献   

8.
The unusual linear trinuclear complex [Mo3O4(TPP)3]+ is formed in solution upon the reaction of [MoO(TPP)-(OClO3)] with [[MoO(TPP)]2O], and an equilibrium between [Mo3O4(TPP)3]+ and its constituent species is rapidly established. Spectrophotometric experiments suggest that [Mo3O4(TPP)3]+ is the predominant species found in solutions resulting from the mixture of [MoO(TPP)(OClO3)] and [[MoO(TPP)]2O], and its formation is strongly favored (log K = 5.5 +/- 0.5 M-1). No evidence of higher oligomers has been observed. A mechanism for the formation of [Mo3O4(TPP)3]+ by the controlled hydrolysis of [MoO(TPP)(OClO3)] is proposed.  相似文献   

9.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

10.
邻苯二甲酸二甲酯是一种干扰人体内分泌系统的化学物质,尽管对人体具有潜在危害,目前仍做为塑料、醋酸乙烯酯、纤维素等生产过程中的添加剂而广泛使用.伴随着邻苯二甲酸二甲酯的生产和应用,自然界不可避免地受其污染.因此,如何有效降解排放在环境中的邻苯二甲酸二甲酯以减少其对人类的不利影响成为化学研究者的重要任务.通过半导体光催化剂高效利用太阳能光催化降解邻苯二甲酸二甲酯是一种有效方法. TiO2等半导体光催化剂由于光催化过程中产生的电子-空穴对极易复合导致其催化效率不高,减少光生电子-空穴对复合率进而提高光量子效率的方法有金属掺杂、非金属掺杂、表面敏化、半导体复合等多种手段.其中, MoO3由于其独特的结构和化学性质广泛应用于光催化领域,并常作为耦合剂与其他半导体(如TiO2)复合以提高光催化活性.在我们以前的工作中,曾使用MoO3做为耦合剂与V2O5复合,实验结果证明MoO3与V2O5复合形成异质结构有效提高了V2O5的光催化效率. MoO3由于其带隙较宽(约2.90 eV),对太阳光利用率不高,以及电子-空穴对极易复合导致MoO3实际光催化活性并不好.因此,我们考虑以MoO3做为主体, V2O5做为耦合剂研究n(V)/n(Mo)比对V2O5/MoO3复合光催化剂结构和性能的影响.我们以聚乙烯吡咯烷酮(PVP)、四水合钼酸铵((NH4)6Mo7O24·4H2O)和偏钒酸铵(NH4VO3)为原料,采用静电纺丝技术结合溶胶凝胶过程的方法,成功制备了具有不同n(V)/n(Mo)比的V2O5/MoO3复合光催化剂. XRD结果表明,当n(V)/n(Mo)<1/6时,钒离子掺杂进入MoO3晶格内,n(V)/n(Mo)>1/6时,部分钒离子掺杂进入MoO3晶格内,部分钒离子聚集形成V2O5晶体, V2O5晶体数量随着n(V)/n(Mo)逐渐增加,且尺寸有所增长.这一点在扫描电镜中得到了进一步的证实.扫描电镜结果表明α-MoO3呈规则的层状结构,为长度约3μm,宽度约2μm,厚度约500 nm的表面光滑的正交相MoO3微纳米片,而V2O5则为微纳米颗粒,其中表面光滑的层状MoO3微纳米片散乱分布在块状V2O5微纳米颗粒之间,并与V2O5微纳米颗粒团簇紧密接触.由于二者的紧密接触,可能在二者交界处形成了V2O5/MoO3异质结构.紫外-可见漫反射光谱数据表明,掺杂或者异质结构的形成有效降低了MoO3的带隙,促进了MoO3对可见光的吸收,拓宽了光响应范围.为进一步确定MoO3与V2O5复合前后元素的化学态变化,我们进行了XPS能谱测试.通过对V 2p和Mo 3d XPS谱图高斯曲线拟合发现,与纯V2O5相比, VM-6和VM-2中不同价态的V元素电子结合能均有所增加.同时, VM-6和VM-2中的Mo元素的电子结合能与纯MoO3相比有轻微的减少,这说明无论是掺杂还是异质结构的形成都使V离子和Mo离子的化学环境有所改变.我们以亚甲基蓝为探针反应,测试V2O5/MoO3复合光催化剂的催化活性.结果表明,无论掺杂还是异质结构的光催化剂光催化降解亚甲基蓝的活性均远大于纯MoO3和V2O5.这可能是由于V 3d杂质能级的存在以及V2O5和MoO3交界处异质结构的形成有效降低了MoO3的带隙,拓宽了光响应范围.另一方面,异质结构有利于光生电子-空穴对的分离,有效提高了光量子效率.其中, n(V)/n(Mo)的最佳比为1/2,亚甲基蓝的光降解率高达89.23%.为了测定V2O5/MoO3复合光催化剂对邻苯二甲酸二甲酯的光催化活性,我们选取了样品纯MoO3, V2O5, VM-6和VM-2进行测试.测定结果与光催化降解亚甲基蓝结果吻合, VM-2催化效果最高,可达82.20%.并通过高效液相色谱测定邻苯二甲酸二甲酯降解过程的中间产物为邻苯二甲酸.  相似文献   

11.
测定了MoO3/γ-Al2O3、MoO3/TiO2、MoO3/SiO2的激光Raman谱. 通过MoO3/γ-Al2O3、MoO3/TiO2在吡啶吸附前后、氨水提取前后的谱图对比说明, 单层分散的MoO3, 即特征峰为~950cm^-^1的"二维聚钼酸"中钼的配位状态不是单一的,其中一种表面含钼物种(Mo-1)不吸附吡啶, 不溶于氨水, 不显示较强的表面酸性; 另一种表面含钼物种(Mo-2)可吸附吡啶, 溶于氨水, 与催化剂的表面酸位密切相关. 我们认为Mo-1为四面体配位的钼; Mo-2为八面体配位的钼. MoO3/SiO2中的MoO3能100%被氨水溶去, 其酸位数与表面Mo^6^+数之比接近1, 是由其中Mo-2的比例较高, 载体与活性组分之间的相互作用较弱这两个因素所造成的。  相似文献   

12.
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst.  相似文献   

13.
应用XPS对MoO3/TiO2-Al2O3体系的MoO3在TiO2-Al2O3载体上的存在状态及其对H2S的吸附和脱附性能进行了表征,结果表明:MoO3在TiO2-Al2O3表面存在分散状态的不同,这导致了对H2S吸附性能的不同,在相同的条件下,吸附剂的0.15gMoO3/gTiO2-Al2O3时具有最大载硫量,且随吸附温度的升高载硫量也增加,达饱和对S/Mo原子比接近1,较好的氧化脱附温度为15  相似文献   

14.
Mixtures of Pt clusters dispersed on gamma-Al(2)O(3) and additional gamma-Al(2)O(3) led to much higher DME combustion turnover rates than on the individual components or on Pt clusters supported on non-acidic oxides.  相似文献   

15.
In the past 3 decades, research has proven the significance of competitive adsorption in the equilibrium of pollutants between solid and liquid phases. However, studies on the competitive adsorption of complex ions are very limited in spite of its important role in transporting pollutants in the natural environment. The objective of this study is to derive the thermodynamic parameters of the competitive adsorption between ferricyanide and ferrocyanide from the modified Langmuir isotherm and the triple-layer model (TLM) to determine the location of adsorption. The effects of pH, temperature, and ion concentration on competitive adsorption onto gamma-Al(2)O(3) were investigated. The results demonstrate that ferrocyanide is more competitive than ferricyanide. By comparing the derived K(app) with K(int), we inferred that the adsorption of ferricyanide and ferrocyanide onto gamma-Al(2)O(3) was achieved through outer-sphere complexation. The negative DeltaH degrees indicated that the adsorption was exothermic. The positive entropy (Delta S degrees ) was caused by the replacement and release of a greater number of smaller surface ions by adsorbed ferricyanide and ferrocyanide ions of larger size. Copyright 2000 Academic Press.  相似文献   

16.
Ferrocyanide (Fe(CN)6(4-)) adsorption onto gamma-alumina ( gamma-Al2O3(s) ) and gibbsite (Al(OH)3(s)) was investigated over a wide pH range and at various solid loadings. Batch experiments were performed using 100-ml solutions (I = 0.01 M NaCl) dosed with 1.0 mgl(-1) Fe(CN)6(4-) as CN. Equilibrium adsorption-pH edges were developed for 0.3, 0.6, 1.2, and 2.0 gl(-1) gamma-Al(2)O3(s) and 25 gl(-1) Al(OH)3(s). Ferrocyanide adsorption increased as pH decreased, consistent with the general pH dependence for adsorption of anions onto oxide minerals. Ferrocyanide adsorption onto Al(OH)3(s) was approximately 300 times lower than onto gamma-Al(2)O3(s) on a unit weight basis due to the higher surface reactivity of the gamma-Al(2)O3(s). Ferrocyanide adsorption onto gamma-Al(2)O3(s) was significantly greater than has been reported for goethite (FeOOH(s)), and both gamma-Al(2)O3(s) and FeOOH(s) adsorbed ferrocyanide to a greater extent than Al(OH)3(s) . The investigation showed that ferrocyanide can adsorb significantly onto aluminum oxides spanning a range of crystallinity and properties, with the extent of adsorption highly dependent on pH, the solid crystalline structure, and associated surface reactivity.  相似文献   

17.
采用程序升温硫化(TPS)技术,研究了负载于MCM-41分子筛的钼钴系催化剂的性能,根据TPOS结果可知,(1)载体和MoO3相互作用的强度顺序如下:Al2O3>Al2O3-MCM-41>MCM-41>TiO2-MCM-41,说明TiO2具有削弱MCM-41和MoO3作用的能力;而Al2O3则相反,它增加了MoO3和MCM-41的相互作用。(2)助剂CoO对负载于未经改性的MCM-41载体上的MoO3的硫化没有明显的促进作用,这和以Al2O3为载体的情况下不同,在Al2O3上,MoO3和CoO可能生成Co-Mo-O复合相,从而促进了MoO3的硫化。(3)助剂CoO对负载于经TiO2和Al2O3改性的MCM-41上的MoO3的硫化起了促进作用。  相似文献   

18.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

19.
First-principle density functional theory (DFT) calculations on the electronic state and structure of a [Co2+]2/gamma-Al2O3 model catalyst have been performed in relation to catalysis for unique NO-CO reactions on a Co2+ ensemble/gamma-Al2O3 catalyst. The DFT calculations reveal that a bulk structure of gamma-Al2O3 is energetically most favorable when aluminum vacancies are evenly dispersed at octahedral sites, and that the (110) plane is exposed as a top-most layer by its neutrality. Two Co2+ ions on the (110) surface are supported adjacently to each other in a tetrahedral symmetry. The calculations also demonstrate that the vacant d orbitals of the two Co2+ ions are directed toward each other, which brings about an adsorbate-adsorbate interaction between two molecules which adsorb on each of the Co2+ ions. This may be an origin of the unique aspect of Co2+ ensemble/gamma-Al2O3 catalysis.  相似文献   

20.
Isolated molybdate species supported on silica are reported to have the highest specific activity and selectivity for the direct oxidation of methane to formaldehyde. The present investigation was undertaken to understand the elementary redox processes involved in the formation of formaldehyde over such species. A MoO(x)/SiO(2) catalyst was prepared with a Mo loading of 0.44 Mo/nm(2). On the basis of evidence from extended X-ray absorption fine structure (EXAFS) and Raman spectroscopy, the Mo atoms in this catalyst are present as isolated, pentacoordinated molybdate species containing a single Mo=O bond. Isotopic labeling experiments in combination with in-situ Raman spectroscopy were used to examine the reducibility of the dispersed molybdate species and the exchange of O atoms between the gas phase and the catalyst. It was established that treatment of MoO(x)/SiO(2) at 873 K under pure methane reduces the dispersed molybdate species to only a limited extent and results mainly in the deposition of amorphous carbon. During CH(4) oxidation to formaldehyde, the catalyst undergoes only a very small degree of reduction and typically only approximately 50-500 ppm of Mo(VI) is reduced to Mo(IV). Reactions carried out using CH(4) and (18)O(2) show that there is extensive scrambling of O atoms between the species in the gas phase and the catalyst. Additional experiments revealed that H(2)O formed in the reaction is the principal species responsible for the exchange of O atoms between the gas phase and the SiO(2) support. Low concentrations of H(2)O were observed to enhance the activity of MoO(x)/SiO(2) for CH(4) oxidation to formaldehyde. A mechanism for the oxidation of CH(4) over MoO(x)/SiO(2) was formulated in light of the observations made here and is discussed in the light of previous studies. It is proposed that peroxides are produced by the reaction of O(2) with a small concentration of reduced molybdate species and that the reaction of CH(4) with these peroxide species leads to the formation of formaldehyde. The proposed mechanism also accounts for the positive effects of low concentrations of H(2)O on the rate of formaldehyde formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号