首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and simple procedure for the direct screening of urine samples is described. The method involves microextraction in a packed sorbent (MEPS) that is on-line coupled to a capillary liquid chromatograph with fluorimetric detection. The overall arrangement works as a screening/confirmatory system for monitoring non-polar heterocyclic aromatic amines (HAAs) in urine samples. This configuration allows the selective retention of HAAs from urine on a C18 MEPS cartridge integrated in the needle of a micro-well plate autosampler. Retained HAAs were eluted with methanol/water (90:10, v/v) and directly injected into the fluorimetric detector. This screening method provides a yes/no binary response that may require confirmation. The samples for which the concentration of HAAs was close to or above the established threshold limit (30 ng mL−1) were subjected to capillary liquid chromatography (CLC) for confirmation purposes. A mobile phase of acetonitrile and triethylamine (25 mM) at pH 2.5, through a gradient of composition at a flow rate of 20 μL min−1, resulted in good separations between the analytes in less than 11 min. This confirmation method allowed the determination of the analytes in the 10-100 ng mL−1 range for harmane and norharmane and from 20 to 200 ng mL−1 for 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b] indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido-[4,3-b] indole (Trp-P-2), 2-amino-9H-pyrido-[2,3-b] indole (AαC) and 2-amino-3-methyl-9H-pyrido-[2,3-b] indole (MeAαC), with relative standard deviation (RSD) values between 2.12% and 3.73%, and limits of detection between 1.6 and 5.6 ng mL−1 for all the HAAs.  相似文献   

2.
Gao W  Chen G  Chen Y  Li N  Chen T  Hu Z 《Journal of chromatography. A》2011,1218(33):5712-5717
A novel method of on-line single drop microextraction (SDME) coupled with sweeping micellar electrokinetic chromatography (MEKC) for the selective extraction and dual preconcentration of alkaloids was developed. In this technique, analytes of three alkaloids were firstly extracted from 4.0 mL basic aqueous sample solution (donor phase, 500 mM NaOH) into a layer of n-octanol at temperature 30 °C with the stirring rate of 1150 rpm, then back-extracted into the acidified aqueous acceptor (acceptor phase, 50 mM H3PO4) suspended at the tip of a capillary at 650 rpm. Then, the aqueous acceptor was introduced into capillary by hydrodynamic injection with a height difference of 15 cm between the inlet and outlet of capillary for 300 s, and analyzed directly by on-line sweeping MEKC. With the selective SDME, we were able to extract three alkaloids without any interfering components in human urine samples. Under the optimum conditions, the proposed method achieved limits of detections (LOD) of between 0.2 ng mL−1 and 1.5 ng mL−1 with 1583–3556-fold increases in detection sensitivity for three analytes, which indicated that it was a promising method for analysis of alkaloids in human urine.  相似文献   

3.
Zhang PP  Shi ZG  Yu QW  Feng YQ 《Talanta》2011,83(5):5896-1715
A new method based on dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography (HPLC) has been developed for the analysis of UV filters. A specially designed flask, which has two narrow open necks with one of them having a capillary tip, was employed to facilitate the DLLME process. By adopting such a device, the extraction and subsequent phase separation were conveniently achieved. A binary solvent system of water sample and low-density extraction solvent (1-octanol) was used for the DLLME and no disperser solvent was involved. The extraction was accelerated by magnetic agitation of the two phases. After extraction, phase separation of the extraction solvent from the aqueous sample was easily achieved by leaving the extraction system statically for a while. No centrifugation step involving in classical DLLME was necessary. The analyte-enriched phase, floating above the sample solution, was elevated and concentrated into the narrow open tip of the flask by adding pure water into it via the other port, which was withdrawn with a microsyringe for the subsequent HPLC analysis. Under the optimized conditions, the limits of detection for the analytes were in range of 0.2-0.8 ng mL−1 .The linearity ranges were 8-20,000 ng mL−1 for HB, 7-20,000 ng mL−1 for DB, 8-10,000 ng mL−1 for BP and 5-20,000 ng mL−1 for HMB, respectively. Enrichment factors ranging from 59 to 107 folders were obtained for the analytes. The relative standard deviations (n = 3) at a spiked level of 80 ng mL−1 were between 1.4 and 4.8%. The proposed magnetic stirring-assisted DLLME method was successfully applied to the analysis of lake water samples.  相似文献   

4.
A multiresidue analytical method for the determination of emerging pollutants belonging to personal care products (PCPs) (antimicrobials, preservatives), benzotriazole UV stabilizers (BUVSs) and organophosphorus compounds (OPCs) in fish has been developed using high speed solvent extraction (HSSE) followed by silica gel clean up and ultra fast liquid chromatography coupled with tandem mass spectrometry (UFLC–MS/MS) analysis. Developed extraction and clean up method yielded good recovery (>70%) for all the four groups of emerging pollutants, i.e. antimicrobials (78.5–85.6%), preservatives (85.0–89.4%), BUVSs (70.9–112%) and OPCs (81.6–114%; except for TEP – 68.9% and TPeP – 58.1%) with RSDs ranging from 0.7 to 15.4%. Intra- and inter-day repeatabilities were less than 19.8% and 19.0%, respectively at three spiked levels. The concentrations were given in lipid weight (lw) basis, and the method detection limits were achieved in the lowest range of 0.001–0.006 ng g−1 for two antimicrobials, 0.001–0.015 ng g−1 for four preservatives, 0.0002–0.009 ng g−1 for eight BUVSs and 0.001–0.014 ng g−1 for nine OPCs. Finally, the method was successfully validated as a simple and fast extraction method for the determination of 23 compounds belonging to PCPs, BUVSs and OPCs and applied to the analysis of three species of fish from Manila Bay, the Philippines. Concentrations ranged from 27 to 278 ng g−1 for antimicrobials, 6.61 to 1580 ng g−1 for paraben preservatives, −1 for BUVSs and ND (not detected) to 266 ng g−1 for OPCs suggesting the ubiquitous contamination by these emerging pollutants in Manila Bay. This is the first method developed for the determination of triclocarban, four paraben preservatives and four BUVSs, in fish.  相似文献   

5.
This study presents the development of an analytical method for determining 9 synthetic musks in water matrices. The developed method is based on stir bar sorptive extraction (SBSE), coated with polydimethylsiloxane, and coupled with a thermal desorption–gas chromatography–mass spectrometry system (TD–GC–MS). SBSE can efficiently trap and desorb the analytes providing low limits of detection (between 0.02 ng L−1 and 0.3 ng L−1). Method validation showed good linearity, repeatability and reproducibility for all compounds. Furthermore, the limited manipulation of the sample required in this method implies a significant decrease of the risk of external contamination of the samples. The performance of the method in real samples was evaluated by analysing biological wastewater treatment plant (WWTP) influent and effluent samples, reverse osmosis treatment plant effluents and river waters. The most abundant musk was galaxolide with values up to 2069 ng L−1 and 1432 ng L−1 in the influent and effluent of urban WWTP samples, respectively. Cashmeran, Pantolide and Tonalide were also detected in all the matrices with values up to 94 ng L−1, 26 ng L−1 and 88 ng L−1, respectively. Although in Europe the use of nitromusks in cosmetics is prohibited, musk xylene and musk ketone were detected both in the WWTP and in the river samples. As far as we know, this is the first time than a SBSE method coupled with TD is applied for the determination of synthetic musks in water samples.  相似文献   

6.
We describe a selective pressurized liquid extraction (SPLE) method, followed by gas chromatography–mass spectrometry (GC–MS), for the simultaneous extraction and clean-up of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sheep liver tissue samples. The on-line clean-up of liver tissue by SPLE was tested using differing amount of acid-modified silica (sulphuric acid:silica gel, 1:2, w/w), the most effective amount being 20 g. Different extraction solvents (iso-hexane and dichloromethane), either alone or in various combinations, were used to extract these target compounds from spiked liver samples. Variables affecting the SPLE extraction efficiency, including temperature, pressure, number of extraction cycles and static extraction time were studied; the optimum parameters were 80 °C, 10.3 MPa, 2 cycles and 5 min, respectively. The SPLE based method was compared with more traditional Soxhlet, off-line PLE, ultrasonic and heating extraction methods. Overall the mean percentage recoveries for all target chemicals using SPLE were 86–103% (n = 3, SD < 9%), and compared favourably with the Soxhlet (63–109%, n = 3, SD < 8%), off-line PLE (82–104%, n = 3, SD < 18%), ultrasonic (86–99%, n = 3, SD < 11%) and heating (72–102%, n = 3, SD < 21%) extraction methods. The limits of detection of the proposed method were 5–96 pg g−1 and 2–29 pg g−1 for the different PBDE and PCB chemicals studied, respectively. The outputs of the proposed method were linear over the range from 0.02 to 30 ng g−1, for all PCB and PBDE congeners except for PBDE 100 and 153 (0.05–30 ng g−1) and PBDE 183 (0.1–30 ng g−1). The method was successfully applied to sheep liver samples for the determination of the target PBDE and PCB compounds.  相似文献   

7.
Robust analytical procedures for the measurement of decamethylcyclopentasiloxane (D5) in river and estuarine sediments and their application in determining environmental concentrations in the UK are presented for the first time in this work. Novel approaches to minimise commonly reported artefacts are utilised, improving the confidence in the concentrations of D5 reported. Accelerated solvent extraction (ASE) and liquid–solid extraction methods are compared. Both methods use on-column injection gas chromatography/mass spectrometry (GC/MS). Measurements of D5 concentrations in sediments sampled from the river Great Ouse and from the Humber estuary (UK) are also reported. ASE was suitable to measure concentrations of D5 in sediments obtained from the river Great Ouse, UK (186–1450 ng g−1, dry weight) and octamethyltetracyclosiloxane (D4, 12–24 ng g−1, dry weight). C12 linear alkybenzene (C12 LAB), which can be used as a chemical marker for sewage effluent related emissions, was also measured in this analysis. Liquid–solid extraction was optimised to provide more confidence in the lower D5 concentrations measured in the Humber estuary, UK (49–256 ng g−1, dry weight). A Limit of quantitation (LOQ) for D5 of 57–110 and 4 ng g−1 dry weight was determined for ASE and liquid–solid extraction, respectively.  相似文献   

8.
A novel analytical protocol based on interfacing on-line matrix solid-phase dispersion (MSPD) with high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) was developed for extraction and determination of 13 sulfonamide residues in grass carp tissues. The target analytes were separated on a fused-core C18-silica column with a period of 7 min and quantified by a triple–quadrupole linear ion-trap mass spectrometer in positive ion multiple-reaction monitoring (MRM) mode. The proposed method was optimized and validated according to Commission Decision 2002/657/EC. The matrix-matched calibration curves were performed at six concentration levels and good linear relationship (R2 = 0.993–0.998) was observed within the range of 0.1–100 ng mL−1. The mean values of relative standard deviation of intra- and inter-day ranging from 1.8% to 7.8% and from 2.8% to 10.3% were obtained, respectively. Moreover, satisfied recoveries (69.0–96.3%) of all studied sulfonamides were demonstrated in different spiked levels, with RSDs ≤ 13.2%. The proposed method has been applied successfully to the analysis of sulfonamides in several grass carp samples, and the results indicated that this novel instrumental coupling was fast, sensitive, reliable and environmental friendly with good prospects.  相似文献   

9.
A method for the quantitative determination of non-steroidal anti-inflammatory drugs (NSAIDs) in sewage sludge was developed and validated. The target compounds were extracted using pressurized hot water extraction (PHWE) and then purified and preconcentrated by three-phase hollow fiber liquid phase microextraction (HF-LPME) followed by LC–ESI-MS analysis. The PHWE was optimized with regard to the pH of solvent as well as other operational parameters. The optimum conditions were 0.01 M NaOH as the extraction solvent, temperature of 120 °C, pressure of 100 bar, static time 5 min, 5 cycles, flush volume 90% and purge time 60 s. Spike recoveries for sludge samples spiked at 200 ng g−1 were in the range of 101–109% but for the native drugs in non-spiked sludge samples, recoveries were 38.9%, 59.8%, 90.3% and 47.8% for ketoprofen, naproxen, diclofenac and ibuprofen, respectively. Donor phase pH, ionic strength and extraction time were optimized for HF-LPME after PHWE. The optimum conditions were 2 h extraction at pH 1.5 without salt addition. Enrichment factors in the range of 947–1213 times were achieved (extraction recoveries were 23.6–30.3%) for HF-LPME after PHWE. The matrix effect on the ionization of drugs in LC–ESI-MS was also investigated. The results show that there is a smaller matrix effect (−8.9% to +14.6%) in comparison with other published values obtained using solid phase extraction (SPE) for clean-up after pressurized liquid extraction (PLE). Method detection limits (MDLs) and method quantification limits (MQLs) for different drugs were in the range of 0.4–3.7 ng g−1 and 1.5–12.2 ng g−1 in dried sludge samples, respectively. The characteristics of the proposed method were compared with those of other published works. The considerably lower ion suppression/enhancement and minimum use of organic solvents (a few microliters of di-n-hexyl ether) in the sample preparation step are two highlighted advantages of the proposed method in comparison with previously published works. The method was applied to determine NSAIDs in sewage sludge from Källby wastewater treatment plant (Lund, Sweden) in April, June, August and October 2010. The highest concentration level was recorded for ibuprofen in the April sewage sludge sample (588 ng g−1) and all of the selected NSAIDs were detected in all the samples analyzed.  相似文献   

10.
An enantioselective method for the determination of fluoxetine (a selective serotonin reuptake inhibitor) and its pharmacologically active metabolite norfluoxetine has been developed for raw and treated wastewater samples. The stable isotope-labeled fluoxetine and norfluoxetine were used in an extended way for extraction recovery calculations at trace level concentrations in wastewater. Wastewater samples were enriched by solid phase extraction (SPE) with Evolute CX-50 extraction cartridges. The obtained extraction recoveries ranged between 65 and 82% in raw and treated wastewater at a trace level concentration of 50 pM (15-16 ng L−1). The target compounds were identified by the use of chiral liquid chromatography tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring (SRM) mode. The enantiomers were successfully resolved on a chiral α1-acid glycoprotein column (chiral AGP) with acetonitrile and 10 mM ammonium acetate buffer at pH 4.4 (3/97, v/v) as the mobile phase. The effects of pH, amount of organic modifier and buffer concentration in the mobile phase were investigated on the enantiomeric resolution (Rs) of the target compounds. Enantiomeric Rs-values above 2.0 (1.03 RSD%, n = 3) were achieved for the enantiomers of fluoxetine and norfluoxetine in all mobile phases investigated. The method was validated by assessing parameters such as cross-contamination and carryover during SPE and during LC analysis. Cross-talk effects were examined during the detection of the analytes in SRM mode. In addition, the isotopic purity of fluoxetine-d5 and norfluoxetine-d5 were assessed to exclude the possibility of self-contamination. The interassay precision of the chromatographic separation was excellent, with relative standard deviations (RSD) equal to or lower than 0.56 and 0.81% in raw and treated wastewaters, respectively. The method detection and quantification limits (respectively, MDL and MQL) were determined by the use of fluoxetine-d5 and norfluoxetine-d5. The MQL for the single enantiomers ranged from 12 to 14 pM (3.6-4.3 ng L−1) in raw wastewater and from 3 to 4 pM (0.9-1 ng L−1) in treated wastewater. The developed method has been employed for the quantification of (R)-fluoxetine, (S)-fluoxetine and the enantiomers of norfluoxetine in raw and treated wastewater samples to be presented in Part II of this study.  相似文献   

11.
Malavia J  Santos FJ  Galceran MT 《Talanta》2011,84(4):574-1162
This paper describes a fast and simple pressurized liquid extraction (PLE) method combined with gas chromatography coupled to ion trap tandem mass spectrometry (GC-ITMS-MS) for the determination of polybrominated biphenyls (PBBs) in fish samples. The method is based on a simultaneous extraction/clean-up step to reduce analysis time and solvent consumption. The effect of several PLE operating conditions, such as solvent type, extraction temperature and time, number of cycles, and lipid retainer, was optimized to obtain maximum recovery of the analytes with the minimum presence of matrix-interfering compounds. The best conditions were obtained at 100 °C with n-hexane using 15 g of silica modified with sulphuric acid (44%, w/w) as sorbent for lipid removal. Quality parameters of the GC-ITMS-MS method were established, achieving good linearity (r > 0.998), between 1 and 500 ng ml−1, and low instrumental limits of detection (0.14-0.76 pg injected). For the whole method, limits of detection ranging from 0.03 to 0.16 ng g−1 wet weight and good precision (RSD < 16%) were obtained.  相似文献   

12.
Fragrances are widespread aquatic contaminants due to their presence in many personal care products used daily in developed countries. Levels of galaxolide and tonalide are commonly found in surface waters, urban wastewaters and river sediments. On the other hand, earthy-musty compounds confer bad odour to drinking water at levels that challenge the analytical capabilities. The combined determination of earthy-musty compounds and fragrances in water would be a breakthrough to make the traditional organoleptic evaluation of the water quality stricter and safer for the analyst. Two approaches were attempted to improve the analytical capabilities: analyte pre-concentration with a newly developed PDMS-DVB solid-phase microextraction fibre on metal alloy core and sensitive detection by tandem mass spectrometry (MS/MS). The optimization of SPME parameters was carried out using a central composite design and desirability functions. The final optimum extraction conditions were: headspace extraction at 70 °C during 40 min adding 200 g L−1 of NaCl. The detection limits in tandem MS (0.02-20 ng L−1) were marginally lower compared to full scan except for geosmin and trichloroanisol which go down to 0.1 and 0.02 ng L−1, respectively.The analysis of different water matrices revealed that fragrances and earthy-musty compounds were absent from ground- and drinking waters. Surface waters of river Leça contained levels of galaxolide around 250 ng L−1 in the 4 terminal sampling stations, which are downstream of WWTPs and polluted tributaries. Geosmine was ubiquitously distributed in natural waters similarly in rivers Leça and Douro at concentrations <7 ng L−1.  相似文献   

13.
The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0 × 10−7–1.0 × 10−4 mol/L and 5.0 × 10−7–1.0 × 10−4 mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34 × 10−8 mol/L for fumaric acid and 1.92 × 10−7 mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95–105%. This work provided a valid and simple approach to detect fumaric and maleic acid.  相似文献   

14.
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography–mass spectrometry (GC–MS). A two-stage multivariate optimization approach was developed by means of a Plackett–Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8 μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n = 10). Limits of detection were 2 and 9 ng L−1 for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L−1 and 30 ng L−1) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70–72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.  相似文献   

15.
Gao W  Chen G  Chen T  Zhang X  Chen Y  Hu Z 《Talanta》2011,83(5):259-1679
A simple and novel method of directly suspended droplet microextraction (DSDME) combined with single drop back-extraction prior to capillary electrophoresis (CE) measurement is developed. In this technique, DSDME was firstly carried out under the maximum stirring rate for a desired time. Then, an aqueous droplet as back-extractive phase suspended at the needle tip was immersed in droplet of organic phase for back-extracted. After extraction, the aqueous droplet was transferred into a suitable vial and injected into CE for analysis. Three alkaloids were selected as model compounds for developing and evaluating the method performance. Under the optimum conditions, the enrichment factors ranged from 231 to 524. The relative standard deviations for five replicates were in the range of 4.8-8.1%. The calibration graph was linear in the range of 20-1000 ng mL−1 yielding correlation coefficients higher than 0.9983. The limit of detections varied from 8.1 to 14.1 ng mL−1. Human urine samples were spiked with three alkaloids standard to assess the matrix effects and satisfactory results were obtained. The advantages of this method are simplicity of operation, rapid detection, low cost, high enrichment factor and little solvent consumption.  相似文献   

16.
Cao Y  Wu X  Wang M 《Talanta》2011,84(4):1530-1194
Nucleic acids can greatly enhance fluorescence intensity of the kaempferol (Km)-Al(III) system in the presence of silver nanoparticles (AgNPs). Based on this, a novel method for the determination of nucleic acids is proposed. Under studied conditions, there are linear relationships between the extent of fluorescence enhancement and the concentration of nucleic acids in the range of 5.0 × 10−9 to 2.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 7.0 × 10−9 to 2.0 × 10−6 g mL−1 for salmon sperm DNA (smDNA) and 2.0 × 10−8 to 3.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits are 2.5 × 10−9 g mL−1, 3.2 × 10−9 g mL−1 and 7.3 × 10−9 g mL−1, respectively. Samples were satisfactorily determined. And the system of Km-Al(III)-AgNPs was used as a fluorescence staining reagent for sensitive DNA detection by DNA pattern of agarose gel electrophoresis analysis. The results indicate that the fluorescence enhancement should be attributed to the formation of Km-Al(III)-AgNPs-nucleic acids aggregations through electrostatic attraction and adsorption bridging action of Al(III) and the surface-enhanced fluorescence effect of AgNPs.  相似文献   

17.
Li D  Chang X  Hu Z  Wang Q  Li R  Chai X 《Talanta》2011,83(5):1742-1747
A new material has been synthesized using dry process to activate bentonite followed by N-(2-hydroxyethyl) ethylenediamine connecting chlorosilane coupling agent. The synthesized new material was characterized by elemental analysis, FT-IR and thermogravimetry which proved that bentonite was successfully modified. The most interesting trait of the new material was its selective adsorption for rare earth elements. A variety of conditions of the new material were investigated for adsorption. The optimal conditions were determined with respect to pH and shaking time. Samarium (Sm) was quantitatively adsorbed at pH 4 and shaking time of 2 min onto the new material. Under these conditions the maximum static adsorption capacity of Sm(III) was found to be 17.7 mg g−1. The adsorbed Sm(III) ion were quantitatively eluted by 2.0 mL 0.1 mol L−1 HCl and 5% CS (NH2)2 solution. According to IUPAC definition, the detection limit (3σ) of this method was 0.60 ng mL−1. The relative standard deviation (RSD) under optimum conditions was less than 3% (n = 8). The new material also was applied for the preconcentration of trace Sm(III) in environmental samples with satisfactory results.  相似文献   

18.
A surfactant bilayer/diblock polymer coating was previously developed for the separation of proteins. The coating consisted of a mixture of the cationic surfactant dioctadecyldimethylammonium bromide (DODAB) and the neutral polymer poly-oxyethylene (POE) 40 stearate (Journal of Chromatography A 1130 (2006) 265–271). Herein an improved method of generating DODAB/POE stearate coatings is demonstrated, which yields more predictable EOF, more stable coatings, greater average efficiencies and easier method development. In this sequential preparation method the DODAB is first flowed through the capillary, followed by a flow of the POE stearate (sequential method). A tunable EOF (−2.40 to −0.17 × 10−4 cm2/Vs) is achieved by varying the POE chain length (8, 40 and 100 oxyethylene units). Mixtures of POE 8 and POE 40 stearate enabled continuous variation in EOF from −2.44 to −0.42 × 10−4 cm2/Vs. Separations of basic proteins yielded efficiencies of 760 000–940 000 plates/m. Coatings formed using the sequential method were more stable over a larger number of runs (%RSD for migration times: 0.7–1.0% over 30 runs) than those formed using the original mixed method (%RSD: 2.4–4.6% over 14 runs). The ability to tune the EOF is important in maximizing the resolution of analytes with similar electrophoretic mobilities. Histone proteins are separated on a sequentially coated capillary with resolution of nine possible subtypes. Acidic proteins are separated on a sequentially coated capillary at pH 6.4.  相似文献   

19.
Araújo CL  Melo EI  Coelho NM 《Talanta》2011,84(4):661-1173
The development, evaluation and application of a simple and low-cost graphite carbon electrode for the direct determination of citrate in food samples are described here. The electrode exhibits a linear response with a slope of −29.0 ± 1.0 mV decade−1 in a concentration range of 0.07-7.0 mmol L−1 in 0.1 mol L−1 KCl/1.0 mmol L−1 phosphate buffer solution with a limit of detection of 3.0 μmol L−1. The electrode is easily constructed at a relatively low cost and has a fast time response (within 120 s) with no significant changes in its performance characteristics. The performance of the graphite sensor was tested to determine citrate in beverage samples (juices and an isotonic drink), and the results were validated against a reference procedure. The proposed method is quick, inexpensive, selective and sensitive, and is based entirely on conventional instrumentation.  相似文献   

20.
Sladkov V  Zhao Y  Mercier-Bion F 《Talanta》2011,83(5):289-1600
Capillary zone electrophoresis was used to study the uranyl and short chain carboxylic acid sorption on silica and rutile. The separation and the simultaneous determination (in a single run) of a number of short chain carboxylic acids (oxalic, formic, acetic and propionic) and U(VI) with direct UV detection is developed for the analysis of solutions after the sorption experiments. The reverse polarity mode is used (the injection is performed at the negative end). The matrix effect of Si(IV) (possible silica dissolution product) and perchlorate (added for constant ionic strength in sorption experiments) on the separation of U(VI) and organic acids is investigated. The influence of methanol addition in carrier electrolyte on the separation selectivity of given analytes is also studied. Under the chosen conditions (carbonate buffer (ionic strength of 0.1 M), pH 9.8, 0.15 mM of tetradecyltrimethylammonium bromide, 25% (v/v) of methanol) the calibration curves are plotted. They are linear in two ranges of concentration from ∼1 × 10−5 to ∼1 × 10−3 M for oxalate, acetate, propionate, U(VI) and ∼1 × 10−4 to ∼1 × 10−3 for formate. The accuracy of the procedure is checked by the “added-found” method in simulation solutions. The relative standard deviations of the concentrations found are within the range of 1-10% and the recovery is in the range of 90-115%. This method is applied for the analysis of aqueous samples issued from sorption experiments on silica and rutile. The obtained results indicate that the given organic acids decrease uranium sorption both on silica and rutile. These experiments demonstrate that short chain carboxylic acids can influence the mobility and the chemistry of U(VI) in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号