首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In the title compound, 2‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuran­osyl)‐3,7‐dihydro­pyrrolo[2,3‐d]pyrimidin‐4‐one, C11H14N4O4, the N‐glycosylic bond torsion angle, χ, is anti [−106.5 (3)°]. The 2′‐deoxy­ribofuran­osyl moiety adopts the 3T4 (N‐type) conformation, with P = 39.1° and τm = 40.3°. The conformation around the exocyclic C—C bond is ap (trans), with a torsion angle, γ, of −173.8 (3)°. The nucleoside forms a hydrogen‐bonded network, leading to a close‐packed multiple‐layer structure with a head‐to‐head arrangement of the bases. The nucleobase interplanar O=C—C⋯NH2 distance is 3.441 (1) Å.  相似文献   

2.
In the title compound, 4‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13FN4O3, the conformation of the glycosyl bond lies between anti and high anti [χ = −101.1 (3)°]. The furanose moiety adopts the S‐type sugar pucker (2T3), with P = 164.7 (3)° and τ = 40.1 (2)°. The extended structure is a three‐dimensional hydrogen‐bond network involving a C—H⋯F, two N—H⋯O and two O—H⋯O hydrogen bonds.  相似文献   

3.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

4.
In the title compound, 2′‐deoxy‐7‐propynyl‐7‐deaza­adenosine, C14H16N4O3, the torsion angle of the N‐glycosylic bond is anti [χ = −130.7 (2)°]. The sugar pucker of the 2′‐deoxy­ribo­furanosyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type), with P = 185.9 (2)° and τm = 39.1 (1)°, and the orientation of the exocyclic C4′—C5′ bond is −ap (trans). The 7‐substituted propynyl group is nearly coplanar with the heterocyclic base moiety. Mol­ecules of the nucleoside form a layered network in which the heterocyclic bases are stacked head‐to‐tail with a closest distance of 3.197 (1) Å. The crystal structure of the nucleoside is stabilized by three inter­molecular hydrogen bonds of types N—H⋯ O, O—H⋯ N and O—H⋯ O.  相似文献   

5.
In the title compound, 2‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabino­fur­anosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione, C8H10FN3O5, the torsion angle of the N‐gly­cosylic bond is anti [χ = −125.37 (13)°]. The furan­ose moiety adopts the N‐type sugar pucker (3T2), with P = 359.2° and τm = 31.4°. The conformation around the C4′—C5′ bond is antiperiplanar (trans), with a torsion angle γ of 177.00 (11)°. A network is formed via hydrogen bonds from the nucleobases to the sugar residues, as well as through hydrogen bonds between the sugar moieties.  相似文献   

6.
The PbII cation in the title compound, [Pb2(C14H4N2O8)]n, is seven‐coordinated by one N atom and six O atoms from four 4,4′‐bipyridine‐2,2′,6,6′‐tetracarboxylate (BPTCA4−) ligands. The geometric centre of the BPTCA4− anion lies on an inversion centre. Each pyridine‐2,6‐dicarboxylate moiety of the BPTCA4− ligand links four PbII cations via its pyridyl N atom and two carboxylate groups to form two‐dimensional sheets. The centrosymmetric BPTCA4− ligand then acts as a linker between the sheets, which results in a three‐dimensional metal–organic framework.  相似文献   

7.
The title compound, C14H16N4O4, adopts the anti conformation at the gly­cosylic bond [χ−117.1 (5)°]. The sugar pucker of the 2′‐deoxy­ribo­furan­osyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type). The orientation of the exocyclic C4′—C5′ bond is +sc (gauche). The propynyl group is linear and coplanar with the nucleobase moiety. The structure of the compound is stabilized by several hydrogen bonds (N—H⋯O and O—H⋯O), leading to the formation of a multi‐layered network. The nucleobases, as well as the propynyl groups, are stacked. This stacking might cause the extraordinary stability of DNA duplexes containing this compound.  相似文献   

8.
At 160 K, one of the Cl atoms in the furanoid moiety of 3‐O‐acetyl‐1,6‐di­chloro‐1,4,6‐tri­deoxy‐β‐d ‐fructo­furan­osyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, C20H27­Cl3O11, is disordered over two orientations, which differ by a rotation of about 107° about the parent C—C bond. The conformation of the core of the mol­ecule is very similar to that of 3‐O‐acetyl‐1,4,6‐tri­chloro‐1,4,6‐tri­deoxy‐β‐d ‐tagato­furanos­yl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, particularly with regard to the conformation about the glycosidic linkage.  相似文献   

9.
Distamycin‐based tetrapeptide ( 1 ) was covalently tethered to both ends of the central dihydroxyazobenzene moiety at either the 2,2′ or 4,4′ positions. This afforded two isomeric, distamycin–azobenzene–distamycin systems, 2 (para) and 3 (ortho), both of them being photoisomerizable. Illumination of these conjugates in solution at approximately 360 nm induced photoisomerization and the time course of the process was followed by UV/Vis and 1H NMR spectroscopy. The kinetics of the thermal reversion at various temperatures of cis to trans isomers of the conjugates obtained after photoillumination were also examined. This afforded the respective thermal‐activation parameters. Both the molecular architecture and the location of the substituent around the core azobenzene determined the rate and activation‐energy barrier for the cis‐to‐trans back‐isomerization of these conjugates in solution. Duplex–DNA binding of the conjugates and the changes in DNA‐binding efficiency upon photoisomerization was also examined by CD spectroscopy, thermal denaturation studies, and a Hoechst displacement assay. The conjugate 2 showed higher DNA‐binding affinity and a greater change in the DNA‐binding efficiency upon photoisomerization compared with its 2,2′‐disubstituted counterpart. The experimental findings were substantiated by using molecular‐docking studies involving each conjugate with a model duplex d[(GC(AT)10CG)]2 DNA molecule.  相似文献   

10.
In the title compound, 3‐amino‐2‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐6‐methyl‐1,2,4‐triazin‐5(2H)‐one, C9H14N4O4, the conformation of the N‐glycosidic bond is high‐anti and the 2‐deoxy­ribo­furan­osyl moiety adopts a North sugar pucker (2T3). The orientation of the exocyclic C—C bond between the –CH2OH group and the five‐membered ring is ap (gauche, trans). The crystal packing is such that the nucleobases lie parallel to the ac plane; the planes are connected via hydrogen bonds involving the five‐membered ring.  相似文献   

11.
The title complex, C17H9N5·C6H4S4, contains π‐deficient bis(di­nitrile) and TTF mol­ecules stacked alternately in columns along the a‐axis direction; the interplanar angle between the TTF molecule and the isoindolinyl C4N[C(CN)2]2 moiety is 1.21 (4)°. The N‐allyl moiety in the TCPI mol­ecule is oriented at an angle of 87.10 (10)° with respect to the five‐membered C4N ring, and the four C[triple‐bond]N bond lengths range from 1.134 (3) to 1.142 (3) Å, with C—C[triple‐bond]N angles in the range 174.3 (3)–176.9 (2)°. In the TTF system, the S—C bond lengths are 1.726 (3)–1.740 (3) and 1.751 (2)–1.763 (2) Å for the external S—C(H) and internal S—C(S) bonds, respectively.  相似文献   

12.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

13.
In the title compound, 4‐amino‐2‐(2‐O‐methyl‐β‐d ‐ribofuranos­yl)‐2H‐pyrazolo[3,4‐d]pyrimidine monohydrate, C11H15N5O4·H2O, the conformation of the N‐glycosylic bond is syn [χ = 20.1 (2)°]. The ribofuran­ose moiety shows a C3′‐endo (3T2) sugar puckering (N‐type sugar), and the conformation at the exocyclic C4′—C5′ bond is −ap (trans). The nucleobases are stacked head‐to‐head. The three‐dimensional packing of the crystal structure is stabilized by hydrogen bonds between the 2′‐O‐methyl­ribonucleosides and the solvent mol­ecules.  相似文献   

14.
In the title compound, 4‐amino‐1‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐6‐methyl­sulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C11H16N5O3S, the conformation of the glycosidic bond is between anti and high anti. The 2′‐deoxy­ribofuranosyl moiety adopts the C3′‐exo–C4′‐endo conformation (3T4, S‐type sugar pucker), and the conformation at the exocyclic C—C bond is +sc (+gauche). The exocyclic 6‐amine group and the 2‐methyl­sulfanyl group lie on different sides of the heterocyclic ring system. The mol­ecules form a three‐dimensional hydrogen‐bonded network that is stabilized by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

15.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐benzotriazole, C11H14N4O3, the conformation of the N‐glycosidic bond is in the high‐anti range [χ = ?77.1 (4)°] and the 2′‐deoxy­ribo­furan­ose moiety adopts a 2′‐­endo (2E) sugar puckering. The 5′‐hydroxyl group is disordered and has conformations ap with γ = 171.1 (3)° [occupation of 61.4 (3)%] and +sc with γ = 52.4 (6)° [occupation of 38.6 (3)%]. The nucleobases are stacked in the crystal state.  相似文献   

16.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐eythro‐pento­furan­osyl)‐3‐vinyl‐1H‐pyrazolo­[3,4‐d]­pyrimidine monohydrate, C12H15N5O3·H2O, the conformation of the gly­cosyl bond is anti. The furan­ose moiety is in an S conformation with an unsymmetrical twist, and the conformation at the exocyclic C—C(OH) bond is +sc (gauche, gauche). The vinyl side chain is bent out of the heterocyclic ring plane by 147.5 (5)°. The three‐dimensional packing is stabilized by O—H·O, O—H·N and N—H·O hydrogen bonds.  相似文献   

17.
In the title dimeric complex, [Cu2(C4H4O4)2(C7H6N2S)4], which possesses a centre of symmetry, the Cu atoms are enclosed in a 14‐membered ring. They adopt a distorted square‐bipyramidal (4+2) coordination. The four closest donor atoms are two N atoms of 2‐amino­benzo­thiazole ligands and two O atoms of the succinate carboxylate groups. They form a square‐planar cis arrangement, with an average Cu—N distance of 2.003 (3) Å and Cu—O distances of 1.949 (3) and 1.965 (3) Å. Two longer Cu—O bonds of 2.709 (3) and 2.613 (3) Å involving the remaining O atoms of the carboxylate groups complete the sixfold coordination of the Cu atoms. The H atoms of each amino group of the 2‐amino­benzo­thiazole molecules form intra‐ and inter­molecular N—H?O hydrogen bonds. A nearly perpendicular inter­molecular C—H?Cg interaction (Cg is the centroid of the imidazole ring) is observed. The intramolecular Cu?Cu distance is 6.384 (2) Å.  相似文献   

18.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

19.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐7H‐imidazo[1,2‐c]pyrrolo[2,3‐d]pyrimidine hemihydrate], 2C13H14N4O3·H2O or (I)·0.5H2O, shows two similar conformations in the asymmetric unit. These two conformers are connected through one water molecule by hydrogen bonds. The N‐glycosylic bonds of both conformers show an almost identical anti conformation with χ = −107.7 (2)° for conformer (I‐1) and −107.0 (2)° for conformer (I‐2). The sugar moiety adopts an unusual N‐type (C3′‐endo) sugar pucker for 2′‐deoxyribonucleosides, with P = 36.8 (2)° and τm = 40.6 (1)° for conformer (I‐1), and P = 34.5 (2)° and τm = 41.4 (1)° for conformer (I‐2). Both conformers and the solvent molecule participate in the formation of a three‐dimensional pattern with a `chain'‐like arrangement of the conformers. The structure is stabilized by intermolecular O—H...O and O—H...N hydrogen bonds, together with weak C—H...O contacts.  相似文献   

20.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3,7‐dihydro‐4H‐pyrrolo[2,3‐d]pyrimidin‐4‐one], C11H13N3O4, represents an acid‐stable derivative of 2′‐deoxyinosine. It exhibits an anti glycosylic bond conformation, with a χ torsion angle of 113.30 (15)°. The furanose moiety adopts an S‐type sugar pucker 4T3, with P = 221.8 (1)° and τm = 40.4 (1)°. The conformation at the exocyclic C4′—C5′ bond of the furanose ring is ap (trans), with γ = 167.14 (10)°. The extended structure forms a three‐dimensional hydrogen‐bond network involving O—H...O, N—H...O and C—H...O hydrogen bonds. The title compound forms an uncommon hydrogen bond between a CH group of the pyrrole system and the ring O atom of the sugar moiety of a neighbouring molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号