首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The title compound {systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐[6‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)hex‐1‐ynyl]pyrimidin‐2(1H)‐one}, C24H28N6O4, shows two conformations in the crystalline state, viz. (I‐1) and (I‐2). The pyrimidine groups and side chains of the two conformers are almost superimposable, while the greatest differences between them are observed for the sugar groups. The N‐glycosylic bonds of both conformers adopt similar anti conformations, with χ = −168.02 (12)° for conformer (I‐1) and χ = −159.08 (12)° for conformer (I‐2). The sugar residue of (I‐1) shows an N‐type (C3′‐endo) conformation, with P = 33.1 (2)° and τm = 29.5 (1)°, while the conformation of the 2′‐deoxyribofuranosyl group of (I‐2) is S‐type (C3′‐exo), with P = 204.5 (2)° and τm = 33.8 (1)°. Both conformers participate in hydrogen‐bond formation and exhibit identical patterns resulting in three‐dimensional networks. Intermolecular hydrogen bonds are formed with neighbouring molecules of different and identical conformations (N—H...N, N—H... O, O—H...N and O—H...O).  相似文献   

2.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

3.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

4.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

5.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

6.
In the title compound [systematic name: 7‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐2‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine], C11H13FN4O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −110.2 (3)°]. The 2′‐deoxy­ribofuranosyl unit adopts the N‐type sugar pucker (4T3), with P = 40.3° and τm = 39.2°. The orientation of the exocyclic C4′—C5′ bond is −ap (trans), with a torsion angle γ = −168.39 (18)°. The nucleobases are arranged head‐to‐head. The crystal structure is stabilized by four inter­molecular hydrogen bonds of types N—H⋯N, N—H⋯O and O—H⋯O.  相似文献   

7.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

8.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

9.
In the title compound, 4‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13FN4O3, the conformation of the glycosyl bond lies between anti and high anti [χ = −101.1 (3)°]. The furanose moiety adopts the S‐type sugar pucker (2T3), with P = 164.7 (3)° and τ = 40.1 (2)°. The extended structure is a three‐dimensional hydrogen‐bond network involving a C—H⋯F, two N—H⋯O and two O—H⋯O hydrogen bonds.  相似文献   

10.
The title compound [systematic name: 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐ethynylpyrimidin‐2(1H)‐one], C11H13N3O4, shows two conformations in the crystalline state. The N‐glycosylic bonds of both conformers adopt similar conformations, with χ = −149.2 (1)° for conformer (I‐1) and −151.4 (1)° for conformer (I‐2), both in the anti range. The sugar residue of (I‐1) shows a C2′‐endo envelope conformation (2E, S‐type), with P = 164.7 (1)° and τm = 36.9 (1)°, while (I‐2) shows a major C3′‐exo sugar pucker (C3′‐exo‐C2′‐endo, 3T2, S‐type), with P = 189.2 (1)° and τm = 33.3 (1)°. Both conformers participate in the formation of a layered three‐dimensional crystal structure with a chain‐like arrangement of the conformers. The ethynyl groups do not participate in hydrogen bonding, but are arranged in proximal positions.  相似文献   

11.
The title compound [systematic name: 4‐amino‐5‐fluoro‐7‐(β‐d ‐ribofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine], C11H13FN4O4, exhibits an anti glycosylic bond conformation, with a χ torsion angle of −124.7 (3)°. The furanose moiety shows a twisted C2′‐endo sugar pucker (S‐type), with P = 169.8 (3)° and τm = 38.7 (2)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a γ torsion angle of 59.3 (3)°. The nucleobases are stacked head‐to‐head. The extended crystal structure is a three‐dimensional hydrogen‐bond network involving O—H...O, O—H...N and N—H...O hydrogen bonds. The crystal structure of the title nucleoside demonstrates that the C—C bonds nearest the F atom of the pyrrole system are significantly shortened by the electronegative halogen atom.  相似文献   

12.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

13.
The title compound, C10H12FN5O4·H2O, shows an anti glycosyl orientation [χ = −123.1 (2)°]. The 2‐deoxy‐2‐fluoroarabinofuranosyl moiety exhibits a major C2′‐endo sugar puckering (S‐type, C2′‐endo–C1′‐exo, 2T1), with P = 156.9 (2)° and τm = 36.8 (1)°, while in solution a predominantly N conformation of the sugar moiety is observed. The conformation around the exocyclic C4′—C5′ bond is −sc (trans, gauche), with γ = −78.3 (2)°. Both nucleoside and solvent molecules participate in the formation of a three‐dimensional hydrogen‐bonding pattern via intermolecular N—H...O and O—H...O hydrogen bonds; the N atoms of the heterocyclic moiety and the F substituent do not take part in hydrogen bonding.  相似文献   

14.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

15.
Molecules of 2‐(2‐nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R(8) dimers by a single O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.623 (2) Å and O—H⋯O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2‐(4‐nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R(22) rings by a combination of one N—H⋯O hydrogen bond [H⋯O = 1.96 Å, N⋯O = 2.833 (3) Å and N—H⋯O = 171°] and one O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.614 (3) Å and O—H⋯O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H⋯O hydrogen bonds [H⋯O = 2.09 and 2.16 Å, N⋯O = 2.873 (4) and 2.902 (3) Å, and N—H⋯O = 147 and 141°] and two O—H⋯O hydrogen bonds [H⋯O = 1.84 and 1.83 Å, O⋯O = 2.664 (3) and 2.666 (3) Å, and O—H⋯O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three‐dimensional framework by a single C—H⋯O hydrogen bond [H⋯O = 2.45 Å, C⋯O = 3.355 (4) Å and C—­H⋯O = 160°].  相似文献   

16.
The title compounds, bis­(ammonium) naphthalene‐1,5‐di­sul­fon­ate, 2NH4+·C10H6O6S22−, and bis­[1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane] 1,5‐naphthalene­di­sul­fon­ate, 2C7H15N4O+·C10H6O6S22−, were prepared from the acid‐promoted reaction of hexa­methyl­enetetr­amine. In both structures, the di­sulfonate anion is positioned on an inversion center, with each sulfonate group contributing to the supramolecular assemblies via hydrogen bonds. The ammonium cations are linked to sulfonate groups by four distinct N+—H⃛O—S contacts [N⃛O = 2.846 (2)–2.898 (2) Å and N—H⃛O = 160 (2)–175 (2)°], whereas the 1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane cations form one O—H⃛O—S [O⃛O = 2.628 (2) Å and O—H⃛O = 176°] and three C—H⃛O—S [C⃛O = 3.359 (2)–3.380 (2) Å and C—H⃛O = 148–155°] interactions to neighboring sulfonate groups.  相似文献   

17.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

18.
The title compund, [Fe(C5H6N)(C7H7O2)], features one strong intermolecular hydrogen bond of the type N—H...O=C [N...O = 3.028 (2) Å] between the amine group and the carbonyl group of a neighbouring molecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H‐atom acceptor in the formation of a second, weaker, hydrogen bond of the type C—H...O=C [C...O = 3.283 (2) Å] with the methyl group of the ester group of a second neighbouring molecule at (x, −y − , z − ). The methyl group also acts as a weak hydrogen‐bond donor, symmetry‐related to the latter described C—H...O=C interaction, to a third molecule at (x, −y − , z + ) to form a two‐dimensional network. The cyclopentadienyl rings of the ferrocene unit are parallel to each other within 0.33 (3)° and show an almost eclipsed 1,1′‐conformation, with a relative twist angle of 9.32 (12)°. The ester group is twisted slightly [11.33 (8)°] relative to the cylopentadienyl plane due to the above‐mentioned intermolecular hydrogen bonds of the carbonyl group. The N atom shows pyramidal coordination geometry, with the sum of the X—N—Y angles being 340 (3)°.  相似文献   

19.
In the structure of the title 1:1 proton‐transfer compound of brucine with 2‐(2,4,6‐trinitroanilino)benzoic acid, C23H27N2O4+·C13H7N4O8·H2O, the brucinium cations form classic undulating ribbon substructures through overlapping head‐to‐tail interactions, while the anions and the three related partial solvent water molecules (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N—H...OCOO− hydrogen bonds and indirectly by the three water molecules, which form similar conjoint cyclic bridging units [graph set R24(8)] through O—H...OC=O and O—H...OCOO− hydrogen bonds, giving a two‐dimensional layered structure. Within the anion, intramolecular N—H...OCOO− and N—H...Onitro hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity [inter‐ring dihedral angle = 32.50 (14)°]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures, and also represents the first reported structure of any form of the guest compound 2‐(2,4,6‐trinitroanilino)benzoic acid.  相似文献   

20.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号