首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu2SnS3 (CTS) powder has been synthesized at 200 °C by solid state reaction of pastes consisting of Cu and Sn salts and different sulphur compounds in air. The compositions of the products is elucidated from XRD and only thiourea is found to yield CTS without any unwanted CuSx or SnSy. Rietveld analysis of Cu2SnS3 is carried out to determine the structure parameters. XPS shows that Cu and Sn are in oxidation states +1 and +4, respectively. Morphology of powder as revealed by SEM shows the powder to be polycrystalline with porous structure. The band gap of CTS powder is found to be 1.1 eV from diffuse reflectance spectroscopy. Cu2SnS3 pellets are p-type with electrical conductivity of 10−2 S/cm. The thermal degradation and metal–ligand coordination in CTS precursor are studied with TGA/DSC and FT-IR, respectively, and a probable mechanism of formation of CTS has been suggested.  相似文献   

2.
In this paper, we report, for the first time, the results of the polyethylene glycol- (PEG) assisted preparation and characterization of high-quality and well-crystallized Cu2SnS3 (CTS) thin films obtained using sol–gel spin-coating method and a subsequent annealing in a sulphur atmosphere. Structural, morphological, compositional, electrical and optical investigations were carried out. The X-ray diffraction patterns of the samples proved the polycrystalline nature and preferred crystallization of the films. No peak referring to other binary or ternary phases were detected in the patterns. The intensity of the preferred orientation and crystallite size of the films increased with increasing PEG content. This trend yielded an improvement in photo-transient currents of the PEG-assisted growth of CTS films. The scanning electron microscopy images revealed that the CTS films have continuous, dense and agglomeration-like morphology. Through energy dispersive X-ray spectroscopy studies, it has been deduced that the samples consist of Cu, Sn and S of which atomic percentages were consistent with Cu/Sn and S/metal initial ratios. The agglomerated morphology of the samples has been attributed to increasing PEG content. A remarkable enhancement was observed in photo-transient currents of p-n junction of the produced films along with increasing PEG content. Through resistivity-temperature measurements, three impurity level electrical activation energy values for each film were found. Optical band gap values of the films were estimated via absorbance-wavelength behaviours and decreased with increasing PEG content. It has been revealed that PEG-assisted growth of CTS thin films is a promising way to improve its photovoltaic characteristics.  相似文献   

3.
We made Cu2ZnSnS4 (CZTS) thin films by sulfurization of Cu/Sn/Cu/Zn metallic films. Sulfurizations were carried out under different thermal annealing conditions, where maximum temperatures were 440 °C (LT-CZTS) and 550 °C (HT-CZTS). For LT-CZTS films, secondary phases such as SnS2 and Cu2?xS were observed, whereas for HT-CZTS films secondary impurities were not detected. Chemical composition of LT-CZTS film was observed to be very non-uniform. Highly Sn-rich and Zn-rich regions were found on the film surface of LT-CZTS. However, averaged chemical composition for larger area was close to stoichiometry. The HT-CZTS film showed homogeneous structural and chemical composition features. But, for HT-CZTS film, the Sn composition was observed to be decreased, which was due to the Sn-loss. By UV–Visible spectroscopy, optical band gaps of LT- and HT-CZTS films were measured to be ~1.33 eV and ~1.42 eV, respectively. The band gap of LT-CZTS film was also observed to be smaller by photoluminescence measurement. The depressed band gap of LT-CZTS film may be ascribed to some defects and low band gap impurities such as Cu2SnS3 and Cu2-xS in the LT-CZTS film.  相似文献   

4.
Photovoltaic property of Cu4SnS4 (CTS) is studied by employing a superstrate solar cell structure of Mo/CTS/In2S3/TiO2/fluorine-doped tin oxide (FTO) glass for the first time. The CTS absorber layer was prepared by a combination of mechanochemical and doctor blade processes. The annealing effects on the structural, optical and electronic properties of the CTS absorber layer were investigated. The novel CTS absorber layer shows conversion efficiency as high as 2.34% under the standard AM 1.5 condition.  相似文献   

5.
The ternary system Cu–Sn–S was re-investigated and the phase diagram Cu2S–SnS2 studied in detail by differential thermal analysis and X-ray diffractometry. Three phases of composition Cu4SnS4, Cu2SnS3 and Cu2Sn3+xS7+2x(0≤×≤1) were found exhibiting melting points at 833, 856 and 803 °C, respectively. Ellipsometric and diffuse reflectance measurements revealed that the latter two sulfides possess a fundamental band gap of 0.93 eV followed by a higher transitions. For the first time it could be demonstrated that Cu2Sn3S7 has semiconducting properties and an absorption coefficients of the order 105 cm−1.  相似文献   

6.
Cu2SnS3 thin films were prepared using a simple and phase-controlled two-stage process. Initially, Cu-Sn precursors were deposited by DC sputtering, followed by sulfurization at different temperatures (Ts) that vary in the range, 150 - 500 °C. An exhaustive study of the optical properties in relation to sulfurization temperature was performed using transmission and reflectance measurements. The estimated optical absorption coefficient for all the layers was very high and found to be > 104 cm−1. The optical band gap was determined using Tauc plots and it varied in the range, 1.49–2.34 eV with an increase of Ts. The refractive index (n) and the extinction coefficient (k) were also obtained. The optical properties like dispersion parameters, dielectric constant, dissipation factor, optical conductivity, surface energy loss function, volume energy loss function and optical haze were also calculated. Further, analysis of electrical properties such as electrical resistivity, mobility and carrier density of the prepared films with sulfurization temperature was made in order to verify the suitability of synthesized CTS layers for solar cell application.  相似文献   

7.
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, ?2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm?2, 0.40, respectively.  相似文献   

8.
Cu2SnSe3 is an important precursor material for the growth of Cu2ZnSnSe4, an emerging solar cell absorber layer via solid state reaction of Cu2SnSe3 and ZnSe. In this study, we have grown Cu2SnSe3 (CTSe) and Cu2SnSe3-ZnSe (20%) films onto soda-lime glass substrates held at 573 K by co-evaporation technique. The effect of annealing of these films at 723 K for an hour in selenium atmosphere is also investigated. XRD studies of as-deposited Cu2SnSe3 and Cu2SnSe3-ZnSe films indicated SnSe as secondary phase which disappeared on annealing. The direct optical band gap of annealed Cu2SnSe3 and Cu2SnSe3-ZnSe films were found to be 0.90 eV and 0.94 eV respectively. Raman spectroscopy studies were used to understand the effect of ZnSe on the properties of Cu2SnSe3.  相似文献   

9.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

10.
Effect of the evolution of the secondary phases in the first sintering process on the microstructure and critical current density of Bi-2223/Ag tapes has been studied. The amount and grain size of secondary phases were characterized by XRD and SEM/EDS. It has been found that both the microstructure and critical current of the fully reacted tapes depended strongly on the secondary phases formed in the first sintering process. The (Ca,Sr)2CuO3 and (Ca,Sr)14Cu24O41 phases were easily formed and to be stable at higher temperature, however, at lower temperature, the CuO particles appeared easily and keeping stable with dwelling time. The best conversion to Bi-2223, together with the lowest amount of the total secondary phases was achieved when samples treated at 830 °C in 8.5% O2. Samples with the lowest amount and minimum size of secondary phase produced in the first sintering process will obtain the best performance of the fully reacted tapes. The optimum sintering parameters are obtained by controlling the evolution of the secondary phases during the first sintering process.  相似文献   

11.
Alloys with the Heusler compositions Cu2MnIn, Cu2MnAl and Cu2MnSn have been prepared as amorphous films for the first time. The structural disorder results in as-deposited films which are not ferromagnetic and, in fact, exhibit spin-glass properties due to the distribution of MnMn distances and co-existence of positive and negative exchange interactions. Annealing of the In and Al alloys can restore single phase ordered Heusler structures which are ferromagnets with Curie temperatures typical of bulk alloys. The calculated Mn moments remain lower than the bulk values of 4 μB probably due to disorder at grain boundaries. Films annealed under non-optimum conditions crystallized into several non-magnetic structures as well as the magnetic L21 Heusler phase. Lattice constants of all phases were determined. The temperature dependence of resistivity through the amorphous-crystalline transformation was found to confirm the results of thermal annealing on structure and magnetization.  相似文献   

12.
一种印刷型薄膜太阳能电池p-n结调制技术   总被引:1,自引:0,他引:1  
能带值为0.5~0.85 eV材料的稀缺是多结太阳能电池面临的一个主要挑战,本文使用非真空的机械化学法合成了能带值为0.83 eV的Cu2SnS3化合物,使用印刷技术将其制备成吸收层薄膜,并采用superstrate太阳能电池结构(Mo/Cu2SnS3/In2S3/TiO2/FTO glass)对其光伏特性进行了研究.实验表明所制备的太阳能电池短路电流密度、开路电压、填充因子和转换效率分别为12.38 mA/cm2、320 mV、0.28和1.10%.此外,为更好地满足多结太阳能电池对电流匹配的需求,本文对所制备太阳能电池的Cu2SnS3/In2S3 p-n结进行了分析.通过在p-n结界面植入一层薄的疏松缓冲层,使调制后的太阳能电池短路电流密度从最初的12.38 mA/cm2增加到了23.15 mA/cm2,相应太阳能电池转换效率从1.1%增加到了1.92%.该p-n调制技术对印刷型薄膜太阳能电池具有重要借鉴意义.  相似文献   

13.
We have analyzed the electrical and optical properties of Cu2ZnSnS4, Cu2FeSnS4, and Cu2MnSnS4 films with the p-type electrical conductivity, which were prepared by spray pyrolysis at temperature TS = 290°C using 0.1 M aqueous solutions of salts CuCl2 · 2H2O, ZnCl2 · 2H2O, MnCl2 · 2H2O, FeCl3 · 6H2O, SnCl4 · 5H2O, and (NH2)CS. The energy parameters have been determined from analyzing the electrophysical properties of the films using the model of energy barriers at grain boundaries in polycrystalline materials, and the thickness of intercrystallite boundaries has been estimated. The extent of the influence of the hole concentration p0 in the bulk of crystallites and height E b of the energy barriers between grains on the electrical conductivity has been determined. The optical bandgap width for thin Cu2Zn(Fe,Mn)SnS4 films has been calculated based on analyzing the spectral dependences of the absorption coefficient.  相似文献   

14.
Thin films based on Sn-S compounds are currently of great interest because of their potential applications in optoelectronic devices including solar cells. In this work, SnS:Bi thin films are prepared using a novel procedure based on sulfurization of their metallic precursors, varying the Bi content. The effect of the synthesis conditions on the optical properties, phase, and chemical composition of the SnS:Bi thin films was studied through spectral transmittance, X-ray diffraction, and X-ray photoelectron spectroscopy. It was established from transmittance measurements that the optical gap of the deposited films varies between 1.27 and 1.37 eV depending on the Bi content. The analysis revealed that the SnS:Bi thin films grow with a mixture of several phases which include SnS, Sn2S3 SnS2, and Bi2S3, depending on the Bi concentration. The studies also revealed that the conductivity type of the SnS:Bi films depends on the Bi content in the SnS lattice.  相似文献   

15.
在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、550 C温度条件下进行退火得到Cu2ZnSnS4吸收层.分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌.结果表明,退火后薄膜结晶质量良好,表面形貌致密.用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104cm 1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求.用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.  相似文献   

16.
In the present study, for the first time, Cu3N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu3N with thickness ~200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-μm-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu3N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu3N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 °C) of Cu3N. Cu3N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu3N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu3N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu3N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.  相似文献   

17.
Zn–Sb based alloys with Cu2Sb addition were prepared using spark plasma sintering technique and the effects of a Cu-contained intermetallic phase on the microstructures and thermoelectric properties were examined. Rietveld refinement reveals that there are many phases in the alloys, which involve β-Zn4Sb3, a major phase ZnSb, a small amount of an intermetallic compound Cu5Zn8 and unidentified impurity phases, the quantities of ZnSb and Cu5Zn8 increase from 67.3 wt.% to 91.8 wt.% and 0–4.3 wt.% with Cu2Sb additive increasing, respectively. The ZnSb plays a fundamental role in controlling the thermoelectric properties, and Cu5Zn8 is of great significance to optimize the transport properties. The maximum thermoelectric figure of merit ZT of 0.72 is obtained for the alloy (Cu2Sb)0.05–(Zn4Sb3)0.95 at 654 K, which is 0.25 higher than that of undoped β-Zn4Sb3 at the same conditions. Therefore, we conclude that a proper addition of Cu2Sb can contribute to the improvement of thermoelectric properties of Zn–Sb based alloys.  相似文献   

18.
Fabrication of cuprous and cupric oxide thin films by heat treatment   总被引:1,自引:0,他引:1  
Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were prepared by thermal oxidation of copper films coated on indium tin oxide (ITO) glass and non-alkaline glass substrates. The formation of Cu2O and CuO was controlled by varying oxidation conditions such as, oxygen partial pressure, heat treatment temperature, and oxidation time. The microstructure, crystal direction, and optical properties of copper oxide films were measured with X-ray diffraction, atomic force microscopy, and optical spectroscopy. The results indicated that the phase-pure Cu2O and CuO films were produced in the oxidation process. Optical transmittance and reflectance spectra of Cu2O and CuO clearly exhibited distinct characteristics related to their phases. The electrical properties indicated that these films formed ohmic contacts with Cu and ITO electrode materials. Multilayers of Cu2O/CuO were fabricated by choosing the oxidation sequence. The experimental results in this paper suggest that the thermal oxidation method can be employed to fabricate device quality Cu2O and CuO films that are up to 200–300 nm thick.  相似文献   

19.
Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm2, 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material.  相似文献   

20.
The phase composition of nanocrystalline Co(C) films obtained by a new pulsed plasma vaporization technique was found by studying their atomic structure and magnetic properties. The films deposited at the substrate temperature T=50°C were of heterophase structure and consisted of a supersaturated solid Co(C) solution and the metastable Co3C carbide. The films obtained at T=150°C represented a mechanical mixture of the metastable Co3C and Co2C carbides. The metastable Co3C and Co2C carbides obtained in a nanocrystalline state were high-pressure phases (~100 kbar). The thermal stability ranges of these metastable phases were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号