首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
The thermal degradation of the epoxy system diglycidyl ether of bisphenol A (DGEBA n=0) and m-xylylenediamine (mXDA) containing different concentrations of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles was studied by thermogravimetric analysis in order to determine the influence of both, the POSS concentration and the curing cycle on the degradation process and to compare it with the results for the non modified system. Glass transition temperatures for the same systems were also determined by differential scanning calorimetry. Different behaviors have been observed, depending on the POSS concentration and on the curing selection.  相似文献   

2.
Dimeric and oligomeric Al and Zn-containing isobutyl silsesquioxanes (POSS) were studied to investigate their thermal stability both in inert and oxidant atmosphere, by means of Differential Scanning Calorimetry (DSC) and thermogravimetric analyses (TGA).Thermo-oxidative degradation leads to an important solid residue yield, as a consequence of the POSS oxidation to a thermally stable ceramic phase.The study of the differences in degradation pathways of both metal POSS derivatives clearly shows a competition between two possible mechanisms for product thermal behaviour, namely evaporation and oxidation.The metal POSS compounds were incorporated via melt blending into a PP matrix and the composites thermal properties were studied by thermogravimetric analyses.Thermo-oxidative degradation of composites is strongly affected by the presence of metal containing POSS, resulting in an improved thermal stability, in terms of higher weight loss temperature.  相似文献   

3.
The mechanical properties and thermal stability of polymers can be enhanced through the formation of nanocomposites. Nanocomposites consisting of hybrid copolymers of methacrylcyclohexyl polyhedral oligomeric silsesquioxane (POSS‐1) and methyl methacrylate (MMA) with up to 92 wt % (51 mol %) POSS‐1 and with superior thermal properties were synthesized using solution polymerization. The POSS‐1 contents of the copolymers were similar to or slightly higher than those in the feeds, the polydispersity indices were relatively low, and the degree of polymerization decreased with increasing POSS‐1 content. POSS‐1 enhanced the thermal stability, increasing the degradation temperature, reducing the mass loss, and preventing PMMA‐like degradation from propagating along the chain. The mass loss was reduced in a high POSS‐1 content copolymer since the polymerization of POSS‐1 with itself reduced sublimation. Exposure to 450 °C produced cyclohexyl‐POSS‐like remnants in the POSS‐1 monomer and in all the copolymers. The degradation of these remnants, for the copolymers and for the POSS‐1 monomer, yielded 75% SiO2 and an oxidized carbonaceous residue. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4264–4275, 2007  相似文献   

4.
Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites   总被引:3,自引:0,他引:3  
A series of polyhedral oligomeric silsesquioxane/epoxy nanocomposites (POSS/EP) containing 0 wt%, 5 wt%, 10 wt% and 15 wt% content of POSS were prepared. Mechanical properties were used as the index to show the effect of POSS on the thermo-oxygen degradation resistance of epoxy resin. And the thermo-oxygen degradation mechanism was investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Results showed that the incorporation of POSS into epoxy networks enhanced the thermo-oxygen resistance of epoxy. POSS led to the formation of inert layer on the surface of materials which could protect the internal structure from decomposition. As a result, the retention of mechanical properties of EP/POSS hybrids increased with the POSS content increasing.  相似文献   

5.
Block and random polyhedral oligomeric silsesquioxane (POSS)/fluorinated poly aryl ether sulfone tricopolymers were synthesized using different synthetic strategies to investigate the effect of sequence distribution on their thermal, dielectric, and surface properties. Analyses indicated that all block and random copolymers showed similar growth tendency of water contact angles and Tg values, downward tendency of k values with increased content of POSS. The block copolymer displayed higher Tg values up to 187°C than random copolymers (173°C) under the same POSS molar percentage, which were highly related to their different sequence distribution. The dielectric constants of the tricopolymers were drastically reduced because of the presence of POSS and fluorine, and the dielectric constant could achieve as low as 2.71 (1 MHz). Besides, sequence distribution has no obvious influence on its surface properties and properties. Meanwhile, the yields of degradation residues of the tricopolymers were significantly improved by the ceramic formation from POSS moieties during thermal decomposition. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Recent studies on organically modified clays (OMCs) have reported enhanced thermal stabilities when using imidazolium-based surfactants over the typical ammonium-based surfactants. Other studies have shown that polyhedral oligomeric silsesquioxanes (POSS) also improve the thermal properties of composites containing these macromers. In an attempt to utilize the beneficial properties of both imidazolium surfactants and POSS macromers, a dual nanocomposite approach to prepare OMCs was used. In this study, the preparation of a new POSS-imidazolium surfactant and its use as an organic modifier for montmorillonite are reported. The purity, solubility, and thermal characteristics of the POSS-imidazolium chloride were evaluated. In addition, several OMCs were prepared by exchanging the Na+ with POSS imidazolium cations equivalent to 100%, 95%, 40%, 20%, and 5% of the cation exchange capacity of the clay. The subsequent OMCs were characterized using thermal analysis techniques (DSC, SDT, and TGA) as well as 29Si NMR to determine the POSS content in the clay interlayer both before and after thermal oxidation degradation. Results indicate the following: (1) the solvent choice changes the efficiency of the ion-exchange reaction of the clay; (2) self-assembled crystalline POSS domains are present in the clay interlayer; (3) the d-spacing of the exchanged clay is large (3.6 nm), accommodating a bilayer structure of the POSS-imidazolium; and (4) the prepared POSS-imidazolium exchanged clays exhibit higher thermal stabilities than any previously prepared imidazolium or ammonium exchanged montmorillonite.  相似文献   

7.
Hydrolytic degradation of POSS-PEG-lactide hybrid hydrogels   总被引:2,自引:0,他引:2  
A polyhedral oligomeric silsesquioxane (POSS), functionalized with eight arms of poly(ethylene glycol) (PEG; MW 400) and then acrylated, was incorporated into a hydrogel network based on triblock copolymers of poly(lactide-b-ethylene glycol-b-lactide) diacrylates using a redox-initiated polymerization. The organic-inorganic hybrid hydrogels so prepared contained the inorganic crosslinker POSS from 1 to 28 wt.%. The degradation properties of the hydrogels in a pH 7.4 phosphate-buffered saline solution at 37 °C were studied using measurements of mass loss, cryogenic SEM, and ATR-FTIR spectroscopy. It was found that copolymerization of acrylated 1kPEG-lactide with increasing amounts of POSS created a more porous network which was more resistant to hydrolysis. The ATR-FTIR technique was used to monitor the progress of degradation with exposure time through the changes in the carbonyl and C-H deformation bands of the lactide and the Si-C stretching band of the POSS. Increasing POSS incorporation resulted in decreased rate of degradation due to its hydrophobic nature and inertness to hydrolysis. Conversely, an increase in lactide content increased the degradation rate due to the increased number of hydrolytically-sensitive ester groups in the network.  相似文献   

8.
The thermal degradation of a series of three novel bridged polyhedral oligomeric silsesquioxanes (POSS)/polystyrene (PS) nanocomposites, at different POSS content (3%, 5% and 10%), was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres, in order to investigate the effects of this new dumbbell-shaped structure on the filler–polymer interaction and then on the thermal stability of the obtained materials. Nanocomposites were synthesized by in situ polymerization of styrene in the presence of POSS which has not polymerizable groups, aiming to obtain well dispersed POSS/PS systems. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy (SEM) and FTIR spectroscopy evidenced the presence of filler–polymer interactions. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the characteristic parameters of thermal stability, namely temperature at 5% mass loss (T5%) and the activation energy (Ea) of degradation, of the various nanocomposites were determined. The results were discussed and interpreted.  相似文献   

9.
Octaphenylsilsesquioxane (PH‐POSS) and octa(γ‐methacryloxypropyl)silsesquioxane (MA‐POSS) were successfully synthesized by hydrolytic condensation of phenyltrichlorosilane and γ‐methacryloxypropyltrimethoxysilane, and characterized by Fourier transform infrared (FT‐IR), 1H and 29Si nuclear magnetic resonance (NMR), and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrum. Morphology, degradation behavior, thermal, and mechanical properties of hybrid composites were studied by transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), surface contact angle (SCA), tensile, and impact testing. Domains of PH‐POSS and MA‐POSS dispersed in the matrix with a wide size distribution in a range of 0.1–0.5 µm, while PH‐POSS exhibited a preferential dispersion. Because of the possible homopolymerization of MA‐POSS during the melt blending, the glass transition temperature of polycarbonate (PC)/MA‐POSS composites remained nearly unchanged with respect to PC/PH‐POSS composites that showed a depression of Tg due to the plasticization effect. It is interesting to note that the incorporation of POSS retarded the degradation rates of PC composites and thus significantly improved the thermal stabilities. Si? O fractions left during POSS degradations were a key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8% to 15.8–22.1% in air. Fracture stress of two composites showed a slight improvement, and the impact strength of them decreased monotonically with the increase of POSS loading. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Methylsilicone resin/polyhedral oligomeric silsesquioxane (POSS) composites with various proportions of POSS monomer were synthesized by the reaction of functionalized TriSilanolIsobutyl-POSS macromonomer with hydroxyl-terminated methylsilicone resin. The structures of the obtained hybrid polymers were characterized with Fourier-transformed infrared (FT-IR) and transmission electron microscopy (TEM). The FT-IR spectra suggested successful bonding of TriSilanolIsobutyl-POSS and methylsilicone resin. TEM analysis showed that POSS can dissolve in methylsilicone resin at the molecular level. The influences of TriSilanolIsobutyl-POSS on the thermal stability and degradation behavior of methylsilicone resin were studied by thermogravimetric analysis (TGA), solid-state 29Si NMR and X-ray photoelectron spectroscopy (XPS). All these techniques showed that TriSilanolIsobutyl-POSS incorporation results in increased decomposition temperatures and oxidation resistance, primarily by reducing the effect of silanol end groups on the thermolysis through condensation reaction of Si-OH groups and partial loss of isobutyl followed by the formation of an inorganic SiO2 layer to prevent methylsilicone from further degradation.  相似文献   

11.
Effect of homologous of nano-composites on the thermal degradation of the silicone resin was researched based on graphene oxide (GO)/polyhedral oligomeric silsesquioxane (POSS). First, the amino-POSS was grafted onto the GO surface (GO/POSS) via the amide bond. Second, GO/POSS was incorporated into the silicone with active epoxy group via chemistry grafting. The reaction kinetics of the thermal decomposition of the epoxy–silicone resin based on nano-composite homologous effect is developed. The initial decomposition temperature of the modified silicone resin is improved by 77.2°C. At high temperatures, GO/POSS-modified silicone molecular end forms homologous nano-structures, which can restrain silicone future degradation. The developed strategy has potential to restrain the degradation of the polymer molecular chain.  相似文献   

12.
通过双(环戊二烯基)二氯化锆(Cp2ZrCl2)催化剂和改良的甲基铝氧烷(MMAO)助催化剂, 合成了无机-有机杂化共聚物. 研究了2种具有不同单乙烯基反应基团的笼型倍半硅氧烷(POSS)与乙烯的聚合. 对共聚产物的结构、 热力学性质、 分子量及其分布等进行了研究. 共聚单体(POSS)的插入率在0.01%~0.30%之间, 随着共聚单体在共聚物中摩尔分数的增大, 聚合物的熔点和熔解热降低. 共聚物的热重分析结果显示, 乙烯-POSS共聚物拥有更高的热分解温度以及较高的热分解残留量. 随着POSS的加入, 聚合物的分子量明显提高, 聚合物的分子量分布变宽.  相似文献   

13.
This paper deals with the fire behaviour of poly (ethylene terephthalate) (PET) filled with Exolit OP950, a zinc phosphinate fire retardant, and three polyhedral oligomeric silsesquioxanes (POSS) having different chemical structures. Regardless of the POSS type, intumescence occurs during combustion, but the insulation properties of the chars produced are different. Best reductions on total heat evolved (THE) and on cumulative CO2 with no increase in CO emissions are observed when dodecaphenyl POSS is used. This may be related to its thermal degradation pathway, releasing via this process volatile organic species contributing on intumescence and producing an effective protective layer having a foliated structure.  相似文献   

14.
Abstract

A series of waterborne polyurethane-polyhedral oligomeric silsesquioxane (WBPU-POSS) dispersions were synthesized. Different POSS contents were used to evaluate the effect of POSS content on silicone enrichment under both nonimmersed and immersed conditions. The impact of silicone enrichment under immersed conditions on antifouling properties was also evaluated. The structure of the WBPU-POSS coating was identified by FT-IR and 29Si-NMR. X-ray photoelectron spectroscopy (XPS) analysis confirmed a silicone-enriched surface with a certain composition of the WBPU-POSS coating under both nonimmersed and immersed conditions. The mechanical properties, hydrophilicity and hydrolytic degradation of the coating all varied with POSS content. The long-term antifouling performance of immersed coatings depends on surface silicone enrichment, which was found to be above 0.0021?mole POSS content in WBPU-POSS coatings.  相似文献   

15.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Thermal degradation studies of polyurethane/POSS nanohybrid elastomers   总被引:2,自引:0,他引:2  
Reported here is the synthesis of a series of polyurethane/POSS nanohybrid elastomers, the characterisation of their thermal stability and degradation behaviour at elevated temperatures using a combination of thermogravimetric Analysis (TGA) and thermal volatilisation analysis (TVA). A series of PU elastomer systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterised using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increases the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a ∼30 °C increase in onset degradation temperature. Furthermore, characterisation of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard-block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.  相似文献   

17.
星型POSS/PMMA复合材料的ATRP合成及其热性能研究   总被引:1,自引:0,他引:1  
以γ-氯丙基三乙氧基硅烷为原料合成八官能团γ-氯丙基多面体低聚倍半硅氧烷(POSS),以该POSS为引发剂,通过原子转移自由基聚合(ATRP)合成具有星型结构的POSS/PMMA复合材料.通过傅立叶红外(FTIR)、核磁共振(NMR)、凝胶渗透色谱(GPC)和X-射线衍射(XRD)等手段对POSS和POSS/PMMA的化学组成和结构进行了表征,结果表明已经合成八官能团γ-氯丙基POSS,POSS/PMMA复合材料具有分子设计的预定结构,且复合材料的分子结构得到了较好的控制.通过ATRP法实现了POSS在聚合物中的单分散.此外,TGA的研究表明,POSS的引入提高了聚合物的热稳定性.  相似文献   

18.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

19.
An organic-inorganic hybrid copolymer was prepared by using a C2 symmetric ansa-metallocene catalyst in conjunction with modified methylaluminoxane (MMAO). Two kinds of monovinyl substituted polyhedral oligomeric silsesquioxane (POSS) monomers were used to copolymerize with propylene. A special experiment was carried out in order to confirm the purification of the copolymerization products. The unreacted monomer was completely removed by washing with an n-hexane/ethanol mixture. Thermal properties of the propylene/POSS copolymers exhibited improved thermal stability with higher degradation temperature and char yields, demonstrating that the inclusion of inorganic POSS nanoparticles made the organic polymer matrix more thermally robust.  相似文献   

20.
The domain structure and mobility of poly(propylmethacryl-heptaisobutyl-pss)-co-styrene nanocomposites with different polyhedral oligomeric silsesquioxane (POSS) contents were investigated by various solid-state NMR techniques in combination with XRD. The NMR relaxation time measurements suggested that increasing POSS content trended to mobilize the chains in PS unit. Although XRD results showed that POSS was well dispersed into the polymer matrix, 2D WISE NMR indicated that the dispersion of POSS into the polymer matrix led to a composite structure composed of rigid and densely packed PS domain and mobile and amorphous POSS domain. This implied that the size of the two domains was very small. 2D HETCOR NMR implied that the distance between PS network and POSS unit gradually decreased when the POSS content successively increased. The dispersed POSS domain size determined by 2D spin-diffusion NMR experiments was increased with the POSS loading, being about 3.0, 3.9, 6.0 nm for the POSS15, POSS25 and POSS45 nanocomposites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号