首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural zeolite supported nano TiO2 photocatalysts were prepared by a modified electrostatic self‐assembly (ESA) method. First, γ‐mercaptopropyltrimethoxysilane with sulfhydryl (―SH) functional groups was modified on the zeolite powders by using a ‘dry process’. Second, silane with ―SH functional groups was oxidized to sulfonate (―SO3H) groups by using a hydrogen peroxide/glacial acetic acid mixed solution, and the surface of ―SO3H silane–zeolite was electronegative charged due to the ionization of ―SO3H. Third, the hydrolytic titanium polycation from TiCl4 solution assembled onto the electronegative charged zeolite under electrostatic attraction in the reaction solutions. Finally, zeolite supported nano TiO2 photocatalysts can be obtained after the above compounds calcined at certain temperature. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface areas, Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS) and X‐ray fluorescence (XRF). The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in aqueous solution. The results showed that ESA method effectively improved the composite efficiency of zeolite with TiO2. The photocatalysts prepared by ESA method exhibited higher photocatalytic and recycling activities than that of traditional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
《中国化学会会志》2018,65(2):252-258
Constructing a porous structure in photocatalysts is an effective strategy for improving the photocatalytic activity because of its enhanced molecule transfer capability and light capturing efficiency. In this work, a hierarchical macro‐/mesoporous ZnS/TiO2 composite with macrochannels was successfully synthesized without using templates by the simple dropwise addition of an ethanol solution of tetrabutyl titanate and zinc acetate into a sodium sulfide aqueous solution, which was then calcined at 450°C. Compared with pure TiO2, the ordered porous ZnS/TiO2 composite exhibited an enhanced photocatalytic activity on methylene blue removal under UV‐light irradiation. The results indicate that the macro‐/mesoporous structure, the large specific surface area, and the heterostructure combination between ZnS and TiO2 play a synergistic effect on the enhanced photocatalytic activity via improving the light absorption and the diffusion of organic molecules, providing more reactive sites for the photocatalytic reaction and improving the separation of photogenerated electron–hole pairs, respectively. Radical trapping experiments demonstrated that holes (h+) and superoxide anion radicals (O2) play an important role in the photocatalytic oxidation process.  相似文献   

3.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

4.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

5.
The synthesis of Zn‐doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2O2. The catalyst was characterized by transmission electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller, UV–visible reflectance spectra and X‐ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn‐doped TiO2. Zn‐doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2O2 modification further enhanced the photocatalytic activity. Zn doping and H2O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn‐doped TiO2 and H2O2 modified Zn‐doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2O2 modified Zn‐doped TiO2, favoring the adsorption of visible light. Furthermore, Zn‐doped TiO2 modified by H2O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.  相似文献   

6.
《先进技术聚合物》2018,29(1):254-262
Membrane technology has been successfully applied for the removal of dyes from wastewater in the textile industry. A novel poly(vinylidene fluoride) (PVDF) membrane was prepared via blending with different dosages of Ag‐TiO2‐APTES composite for dyeing waste water treatment in our study. And the effect of Ag‐TiO2‐APTES blended into the PVDF membrane was discussed, including the rejection rate of methylene blue (MB) dye, membrane morphology, surface hydrophilicity, antibacterial activity, and a certain photocatalytic self‐cleaning performance. X‐ray diffraction and Fourier transform infrared characterization confirmed that Ag‐TiO2 was functionalized by amount of hydroxyl group (−OH) and amino group (NH−), which provided by APTES. Contact angle measurement certified that the hydrophilicity of the membrane surface increased, with the contact angle decrease to 61.4° compared with 81.8° of original PVDF membrane. MB rejection rate was also increased to 90.1% after addition of Ag‐TiO2‐APTES, and the rejection of original membrane was only 74.3%. The morphologies of membranes were observed by scanning electron microscope, which indicated that Ag‐TiO2‐APTES had a good dispersion in membrane matrix and also improved the microstructure of membranes. Besides, UV irradiation experiments were performed on the composite films contaminated by MB, and the result showed that Ag‐TiO2‐APTES nanoparticle provided PVDF membrane with a certain photodegradation capacity under UV irradiation. Moreover, antibacterial activity of the composite membrane was also demonstrated through antibacterial experiment, Escherichia coli as the representative bacteria. Perhaps, this research may provide a new way for PVDF blending modification.  相似文献   

7.
The photocatalytic activity of TiO2 nanoparticles (nano‐TiO2) and its hybrid with SiO2 (nano‐TiO2–SiO2) for degradation of some organic dyes on cementitious materials was studied in this work. Nanohybrid photocatalysts were prepared using an inorganic sol–gel precursor and then characterized using XRD, SEM and UV–Vis. The grain sizes were estimated by Scherrer's equation to be around 10 nm. Then, a thin layer was applied to Portland cement concrete (PCC) blocks by dipping them into nano‐TiO2 and nano‐TiO2–SiO2 solution. The efficiency of coated PCC blocks for the photocatalytic decomposition of two dyes, Malachite Green oxalate (MG) and Methylene Blue (MB), was examined under UV and visible irradiation and then monitored by the chemical oxygen demand tests. The results showed that more than 80% and 92% of MG and MB were decomposed under UV–Vis irradiation using blocks coated with nano‐TiO2–SiO2. TiO2/PCC and TiO2–SiO2/PCC blocks showed a significant ability to oxidize dyes under visible and UV lights and TiO2–SiO2/PCC blocks require less time for dye degradation. Based on these results, coated blocks have increased photocatalytic activity which can make them commercially accessible photocatalysts.  相似文献   

8.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

9.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   

10.
Carbon‐doped titania (C‐TiO2) nanoparticles were synthesized by the sol–gel method at different calcination temperatures (300–600°C) employing titanium tetraisopropoxide (TTIP) as the titanium source and polyoxyethylene sorbitan monooleate (Tween 80) as the carbon source. The physical properties of C‐TiO2 samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities were checked through the photodegradation of phenolphthalein (PHP) under ultraviolet irradiation. The UV spectrum showed that the carbon doping extends the absorption range of TiO2 to the visible region. However, the photocatalytic activity is affected by the electron–hole recombination phenomenon, as revealed by the photoluminescence (PL) study. According to the PL spectra, carbon doping reduces the edge‐to‐edge electron–hole recombination. Nevertheless, the number of defect sites is greatly influenced by the calcination temperature of C‐TiO2. C‐TiO2 that was calcined at 400°C showed the highest photodegradation percentage of PHP, which was mainly attributed to the synergic effect of the low direct edge‐to‐edge electron–hole recombination, high content of defect sites, and retention of active electrons on the surface hydroxyl group.  相似文献   

11.
采用溶胶-凝胶法在钛酸丁酯水解过程引入硼酸、硝酸铈,制备具有光催化活性的硼铈共掺杂纳米二氧化钛(TiO2),经XRD、TEM、FT-IR、UV-Vis-DRS表征晶体结构,在日光灯照射下,光催化降解三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯农药。结果表明:硼铈共掺杂的TiO2只有锐钛矿型,而纯的或掺铈的TiO2有含有锐钛矿型、金红石相和少量板钛矿型,UV-Vis-DRS测定结果表明硼铈共掺杂的TiO2禁带宽度变小,硼铈共掺杂的TiO2在可见光区吸光度高于掺杂铈和不掺杂的TiO2,在420nm~850nm有强的吸收;在同样光照下对三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯的降解试验证明硼铈共掺杂纳米TiO2的光催化活性高于不掺杂或只掺杂铈的TiO2。  相似文献   

12.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

14.
A magnetized nano‐photocatalyst based on TiO2/magnetic graphene was developed for efficient photodegradation of crystal violet (CV). Scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and elemental mapping were used to characterize the prepared magnetic nano‐photocatalyst. The photocatalytic activity of the synthesized magnetic nano‐photocatalyst was evaluated using the decomposition of CV as a model organic pollutant under UV light irradiation. The obtained results showed that TiO2/magnetic graphene exhibited much higher photocatalytic performance than bare TiO2. Incorporation of graphene enhanced the activity of the prepared magnetic nano‐photocatalyst. TiO2/magnetic graphene can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, magnetized nano‐photocatalyst dosage, UV light irradiation time, H2O2 amount and initial concentration of dye on the photodegradation efficiency were evaluated and optimized. Efficient photodegradation (>98%) of the selected dye under optimized conditions using the synthesized nano‐photocatalyst under UV light irradiation was achieved in 25 min. The prepared magnetic nano‐photocatalyst can be used in a wide pH range (4–10) for degradation of CV. The effects of scavengers, namely methanol (OH? scavenger), p‐benzoquinone (O2?? scavenger) and disodium ethylenediaminetetraacetate (hole scavenger), on CV photodegradation were investigated.  相似文献   

15.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

16.
An improvement in the photodegradation performance for dyes due to interaction between carbon and titania in a self‐assembled mesoporous C? TiO2 composite catalyst, even for the difficult degradation of azo dyes, is reported herein. The dye removal process involves adsorption of the dye from water by the mesoporous carbon–titania, followed by photodegradation on the separated dye‐loaded solid. Such adsorption–catalysis cycles can be carried out more than 80 times without discernible loss of photocatalytic activity or the anatase content of the composite. In each run, about 120 mg dye per g catalyst can be degraded. The mesoporous carbon–titania catalyst also exhibits a high capacity for converting methyl orange in aqueous solution under visible light. Characterization by XRD, TEM, and N2 sorption techniques has revealed that the self‐assembled composite catalyst has an ordered mesostructure, uniform mesopores (4.3 nm), a large pore volume (0.30 cm3 g?1), and a high surface area (348 m2 g?1). The pore walls are composed of amorphous carbon and anatase nanoparticles of size 4.2 nm, which are well dispersed and confined. X‐ray photoelectron spectroscopy (XPS), surface photovoltage spectroscopy (SPS), and UV/Vis absorption results indicate doping of carbon into the anatase lattice and a change in the bandgap of the semiconductor. The synergistic improvement in the composite catalyst can be attributed to the following features: (1) carbon doping of the anatase lattice modifies its bandgap and enhances its activity under visible light; (2) confinement within carbon pore walls prevents aggregation of tiny anatase nanoparticles, improving their activity and stability; (3) the mesopores provide a confined space for photocatalysis; and (4) the strong adsorption ability of porous carbon for organic substances ensures that large quantities can be processed and inhibits further diffusion of the adsorbed organic substances, thereby enhancing the mineralization on anatase.  相似文献   

17.
A series of Ag‐enhanced TiO2–x/C composites (Ag/TiO2–x/C composites) with metal‐organic frameworks (MOFs) as precursors were prepared, and their photocatalytic activities were evaluated by the UV‐light driven photodegradation behaviors of methyl blue (MB). The as‐obtained samples were characterized by several techniques such as SEM, XRD, N2‐adsorption, XPS, UV/Vis spectrophotometry and UV/Vis diffuse‐reflectance spectra. The best photocatalytic performance was achieved in Ag/TiO2–x/C composite pyrolyzed at 1000 °C (ATC‐P10) due to rapid capture of electrons caused by silver doping, higher density of TiO2–x lattice oxygen vacancies for better trapping of electrons, and high surface area due to reduction and evaporation of metallic Zn. No obvious deactivation was observed after 10 cycles of UV‐light degradation of MB under the same experimental conditions. This report reveals a new approach to prepare stable and highly efficient UV‐light‐driven photocatalysts for organic pollutants in water.  相似文献   

18.
Cerium‐doped titanium dioxide (TiO2) with a hollow fiber structure was successfully prepared using ammonium ceric nitrate and tetrabutyltitanate as precursors and cotton fiber as the template. The effects of cerium (Ce)‐doping on the crystallite sizes, crystal pattern, and optical property of the prepared catalysts were investigated by means of techniques such as scanning electron microscopy (SEM), X‐ray diffraction (XRD), BET surface area, and UV‐vis diffuse absorption spectroscopy. SEM observation showed that the prepared TiO2 fibers possessed fibrous shape inherited from the cotton fiber and had a hollow structure. As confirmed by XRD and UV‐vis diffuse absorption spectroscopy examinations, Ce‐doping restrained the growth of grain size and extended the photoabsorption edge of TiO2 hollow fiber into the visible light region. The present photocatalyst showed higher photocatalytic reactivity in photodegradation of highly concentrated methylene blue (MB) solutions than pure TiO2 under UV and visible light, and the amount of Ce‐doped significantly affected the catalytic property. In the experiment condition, the photocatalytic activity of 0.5 mol% Ce‐doped TiO2 fiber was optimal of all the prepared samples. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed. The material was easily removed by centrifugal separation. Therefore, using the template method and by doping with cerium, TiO2 may hopefully become a low‐energy consuming, high activity and green environmentally friendly catalytic material.  相似文献   

19.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   

20.
We report a facile non‐hydrothermal method for the large‐scale production of hierarchical TiO2 nanorod spheres for the photocatalytic elimination of contaminants and killing bacteria. Crescent Ti/RF spheres were prepared by deliberately adding titanium trichloride (TiCl3) to the reaction of resorcinol (R) and formaldehyde (F) in an open reactor under heating and stirring. The hierarchical TiO2 nanorod spheres were obtained by calcining the crescent Ti/RF spheres in a furnace in air to burn off the RF spheres. This method has many merits, such as large‐scale production, good crystallisation of TiO2, and good reproducibility, all of which are difficult to realise by conventional hydrothermal methods. The calcination temperature plays a significant role in influencing the morphology, crystallisation, porosity, Brunauer–Emmett–Teller (BET) specific surface area, and hierarchy of the TiO2 nanorod spheres, thus resulting in different photocatalytic performances under UV light and solar light irradiation. The experimental results have demonstrated that the hierarchical TiO2 nanorod spheres obtained after calcination of the crescent Ti/RF spheres at different temperatures displayed similar photocatalytic activities under irradiation with UV light. We attribute this to a balance of opposing effects of the investigated factors. A higher calcination temperature leads to greater light absorption capability of the TiO2 nanorod spheres, thus resulting in higher photocatalytic antibacterial activity under solar light irradiation. It is also interesting to note that the hierarchical TiO2 nanorod spheres displayed intrinsic antibacterial activity in the absence of light irradiation, apparently because their sharp outward spikes can easily pierce and penetrate the walls of bacteria. In this study, the sharpest hierarchical TiO2 nanorod spheres were obtained after calcination at 500 °C, and these exhibited the highest antibacterial activity without light irradiation. A higher calcination temperature proved detrimental to the sharpness of the TiO2 nanorods, thus reducing their intrinsic antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号